Spaces:
Running
Running
File size: 5,309 Bytes
402b504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import numpy as np
import cv2
import onnxruntime as ort
from hivision.creator.retinaface.box_utils import decode, decode_landm
from hivision.creator.retinaface.prior_box import PriorBox
import argparse
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
parser = argparse.ArgumentParser(description="Retinaface")
parser.add_argument(
"--network", default="resnet50", help="Backbone network mobile0.25 or resnet50"
)
parser.add_argument(
"--cpu", action="store_true", default=False, help="Use cpu inference"
)
parser.add_argument(
"--confidence_threshold", default=0.8, type=float, help="confidence_threshold"
)
parser.add_argument("--top_k", default=5000, type=int, help="top_k")
parser.add_argument("--nms_threshold", default=0.2, type=float, help="nms_threshold")
parser.add_argument("--keep_top_k", default=750, type=int, help="keep_top_k")
parser.add_argument(
"-s",
"--save_image",
action="store_true",
default=True,
help="show detection results",
)
parser.add_argument(
"--vis_thres", default=0.6, type=float, help="visualization_threshold"
)
args = parser.parse_args()
def load_model_ort(model_path):
ort_session = ort.InferenceSession(model_path)
return ort_session
def retinaface_detect_faces(image, model_path: str, sess=None):
cfg = {
"name": "Resnet50",
"min_sizes": [[16, 32], [64, 128], [256, 512]],
"steps": [8, 16, 32],
"variance": [0.1, 0.2],
"clip": False,
"loc_weight": 2.0,
"gpu_train": True,
"batch_size": 24,
"ngpu": 4,
"epoch": 100,
"decay1": 70,
"decay2": 90,
"image_size": 840,
"pretrain": True,
"return_layers": {"layer2": 1, "layer3": 2, "layer4": 3},
"in_channel": 256,
"out_channel": 256,
}
# Load ONNX model
if sess is None:
retinaface = load_model_ort(model_path)
else:
retinaface = sess
resize = 1
# Read and preprocess the image
img_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
img = np.float32(img_rgb)
im_height, im_width, _ = img.shape
scale = np.array([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = np.expand_dims(img, axis=0)
# Run the model
inputs = {"input": img}
loc, conf, landms = retinaface.run(None, inputs)
# tic = time.time()
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
prior_data = priors
boxes = decode(np.squeeze(loc, axis=0), prior_data, cfg["variance"])
boxes = boxes * scale / resize
scores = np.squeeze(conf, axis=0)[:, 1]
landms = decode_landm(np.squeeze(landms.data, axis=0), prior_data, cfg["variance"])
scale1 = np.array(
[
img.shape[3],
img.shape[2],
img.shape[3],
img.shape[2],
img.shape[3],
img.shape[2],
img.shape[3],
img.shape[2],
img.shape[3],
img.shape[2],
]
)
landms = landms * scale1 / resize
# ignore low scores
inds = np.where(scores > args.confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1][: args.top_k]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, args.nms_threshold)
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu)
dets = dets[keep, :]
landms = landms[keep]
# keep top-K faster NMS
dets = dets[: args.keep_top_k, :]
landms = landms[: args.keep_top_k, :]
dets = np.concatenate((dets, landms), axis=1)
# print("post processing time: {:.4f}s".format(time.time() - tic))
return dets, retinaface
if __name__ == "__main__":
import gradio as gr
# Create Gradio interface
iface = gr.Interface(
fn=retinaface_detect_faces,
inputs=[
gr.Image(
type="numpy", label="上传图片", height=400
), # Set the height to 400
gr.Textbox(value="./FaceDetector.onnx", label="ONNX模型路径"),
],
outputs=gr.Number(label="检测到的人脸数量"),
title="人脸检测",
description="上传图片并提供ONNX模型路径以检测人脸数量。",
)
# Launch the Gradio app
iface.launch()
|