# B3 ------------ import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization from tensorflow.keras import regularizers # Create Model Structure cnn_img_size = (256, 256) channels = 3 img_shape = (cnn_img_size[0], cnn_img_size[1], channels) base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top= False, weights= "imagenet", input_shape= img_shape, pooling= 'max') b3_model = Sequential([ base_model, BatchNormalization(axis= -1, momentum= 0.99, epsilon= 0.001), Dense(256, kernel_regularizer= regularizers.l2(0.016), activity_regularizer= regularizers.l1(0.006), bias_regularizer= regularizers.l1(0.006), activation= 'relu'), Dropout(rate= 0.45, seed= 123), Dense(4, activation= 'softmax') ]) b3_model.load_weights("efficientnetb3.h5")