from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler import gradio as gr import torch from PIL import Image model_id = 'SG161222/Realistic_Vision_V2.0' prefix = 'RAW photo,' scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( model_id, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, scheduler=scheduler) if torch.cuda.is_available(): pipe = pipe.to("cuda") pipe_i2i = pipe_i2i.to("cuda") def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def _parse_args(prompt, generator): parser = argparse.ArgumentParser( description="making it work." ) parser.add_argument( "--no-half-vae", help="no half vae" ) cmdline_args = parser.parse_args() command = cmdline_args.command conf_file = cmdline_args.conf_file conf_args = Arguments(conf_file) opt = conf_args.readArguments() if cmdline_args.config_overrides: for config_override in cmdline_args.config_overrides.split(";"): config_override = config_override.strip() if config_override: var_val = config_override.split("=") assert ( len(var_val) == 2 ), f"Config override '{var_val}' does not have the form 'VAR=val'" conf_args.add_opt(opt, var_val[0], var_val[1], force_override=True) def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=False): generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None prompt = f"{prefix} {prompt}" if auto_prefix else prompt try: if img is not None: return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None else: return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None except Exception as e: return None, error_str(e) def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): result = pipe( prompt, negative_prompt = neg_prompt, num_inference_steps = int(steps), guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe_i2i( prompt, negative_prompt = neg_prompt, init_image = img, num_inference_steps = int(steps), strength = strength, guidance_scale = guidance, width = width, height = height, generator = generator) return result.images[0] def fake_safety_checker(images, **kwargs): return result.images[0], [False] * len(images) pipe.safety_checker = fake_safety_checker css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: gr.HTML( f"""

Realistic Vision V1.4 ⚡

Demo for Realistic Vision V2.0 Stable Diffusion model by Eugene. {"" if prefix else ""} Running on {"GPU 🔥" if torch.cuda.is_available() else f"CPU ⚡"}.

Please use the prompt template below to get an example of the desired generation results:

Prompt:
RAW photo, *subject*, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3

Example: RAW photo, a close up portrait photo of 26 y.o woman in wastelander clothes, long haircut, pale skin, slim body, background is city ruins,
(high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3
Important note: The "RAW photo" in the prompt may degrade the result in v1.4.
Negative Prompt:
(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality,
low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry,
dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms,
extra legs, fused fingers, too many fingers, long neck

Have Fun & Enjoy ⚡ //THAFX
""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Row(): prompt = gr.Textbox(label="Prompt", show_label=False,max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) image_out = gr.Image(height=512) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically (RAW photo,)", value=prefix, visible=prefix) with gr.Row(): guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1) with gr.Row(): width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) with gr.Tab("Image to image"): with gr.Group(): image = gr.Image(label="Image", height=256, tool="editor", type="pil") strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False) inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix] outputs = [image_out, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) demo.queue(concurrency_count=1) demo.launch()