import joblib import gradio as gr from datasets import Dataset, DatasetDict, load_dataset from huggingface_hub import login login(token="classification") model = joblib.load('arabic_text_classifier.pkl') vectorizer = joblib.load('tfidf_vectorizer.pkl') label_encoder = joblib.load('label_encoder.pkl') def predict_category(text): text_vector = vectorizer.transform([text]) probabilities = model.predict_proba(text_vector)[0] max_prob = max(probabilities) predicted_category = model.predict(text_vector)[0] if max_prob < 0.5: return "Other" predicted_label = label_encoder.inverse_transform([predicted_category])[0] return predicted_label def flag_data(text, prediction): try: dataset = load_dataset("Tevfik34/crowdsourced-text-classification-data", split="train") except: dataset = Dataset.from_dict({"text": [], "prediction": []}) new_data = {"text": [text], "prediction": [prediction]} dataset = dataset.add_item(new_data) dataset.push_to_hub("Tevfik34/crowdsourced-text-classification-data") def classify_and_flag(text): prediction = predict_category(text) flag_data(text, prediction) return prediction interface = gr.Interface(fn=classify_and_flag, inputs=gr.Textbox(lines=5, placeholder= "Enter text in Arabic here...", label="Text" ), outputs=gr.Label(label="text"), title="Arabic Text Classifier", description="Classify Arabic text into categories bu using Logistic Regression") interface.launch()