# main.py import logging from contextlib import asynccontextmanager import torch from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM # --- Configuration --- # The repository ID for your model on the Hugging Face Hub HF_REPO_ID = "rxmha125/Rx_Codex_V1_Tiny_test" # Use GPU if available (CUDA), otherwise fallback to CPU MODEL_LOAD_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # --- Logging Setup --- logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # --- Global variables to hold the model and tokenizer --- model = None tokenizer = None # --- Application Lifespan (Model Loading) --- @asynccontextmanager async def lifespan(app: FastAPI): global model, tokenizer logger.info(f"API Startup: Loading model '{HF_REPO_ID}' to device '{MODEL_LOAD_DEVICE}'...") # Load the tokenizer from the Hub try: tokenizer = AutoTokenizer.from_pretrained(HF_REPO_ID) logger.info("✅ Tokenizer loaded successfully.") except Exception as e: logger.error(f"❌ FATAL: Tokenizer loading failed: {e}") # In a real app, you might want to handle this more gracefully # For Spaces, it will just fail to start, which is okay. # Load the model from the Hub try: model = AutoModelForCausalLM.from_pretrained(HF_REPO_ID) model.to(MODEL_LOAD_DEVICE) model.eval() # Set to evaluation mode for inference logger.info("✅ Model loaded successfully.") except Exception as e: logger.error(f"❌ FATAL: Model loading failed: {e}") yield # The API is now running # --- Code below this line runs on shutdown --- logger.info("API Shutting down.") model = None tokenizer = None # --- Initialize FastAPI --- app = FastAPI( title="Rx Codex V1-Tiny API", description="An API for generating text with the Rx_Codex_V1_Tiny model.", lifespan=lifespan ) # --- Pydantic Models for API Data Validation --- class GenerationRequest(BaseModel): prompt: str max_new_tokens: int = 150 temperature: float = 0.7 top_k: int = 50 class GenerationResponse(BaseModel): generated_text: str # --- API Endpoints --- @app.get("/") def root(): """A simple endpoint to check if the API is running.""" status = "loaded" if model and tokenizer else "not loaded" return {"message": "Rx Codex V1-Tiny API is running", "model_status": status} @app.post("/generate", response_model=GenerationResponse) async def generate_text(request: GenerationRequest): """The main endpoint to generate text from a prompt.""" if not model or not tokenizer: raise HTTPException(status_code=503, detail="Model is not ready. Please try again later.") logger.info(f"Received generation request for prompt: '{request.prompt}'") # --- CRITICAL: Format the prompt correctly for the model --- formatted_prompt = f"### Human:\n{request.prompt}\n\n### Assistant:" # Prepare the input text for the model inputs = tokenizer(formatted_prompt, return_tensors="pt").to(MODEL_LOAD_DEVICE) # Generate text using the model with torch.no_grad(): output_sequences = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=request.max_new_tokens, temperature=request.temperature, top_k=request.top_k, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # Decode the generated tokens back into text full_text = tokenizer.decode(output_sequences[0], skip_special_tokens=True) # Remove the original formatted prompt from the output to return only the new text generated_text = full_text[len(formatted_prompt):].strip() logger.info("Generation complete.") return GenerationResponse(generated_text=generated_text) # --- Uvicorn Runner (for local testing) --- if __name__ == "__main__": import uvicorn logger.info("Starting API locally via Uvicorn...") uvicorn.run(app, host="0.0.0.0", port=8000)