import os import re import onnxruntime import numpy as np from huggingface_hub import snapshot_download from gruut import sentences import numpy as np import scipy.io.wavfile class TTS: def __init__(self, model_name: str, save_path: str = "./model", add_time_to_end: float = 0.8) -> None: if not os.path.exists(save_path): os.mkdir(save_path) model_dir = os.path.join(save_path, model_name) if not os.path.exists(model_dir): snapshot_download(repo_id=model_name, allow_patterns=["*.txt", "*.onnx"], local_dir=model_dir, local_dir_use_symlinks=False ) sess_options = onnxruntime.SessionOptions() self.model = onnxruntime.InferenceSession(os.path.join(model_dir, "exported/model.onnx"), sess_options=sess_options) with open(os.path.join(model_dir, "exported/vocab.txt"), "r", encoding="utf-8") as vocab_file: self.symbols = vocab_file.read().split("\n") self.symbols = list(map(chr, list(map(int, self.symbols)))) self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self.add_time_to_end = add_time_to_end def _ru_phonems(self, text: str) -> str: text = text.lower() phonemes = "" for sent in sentences(text, lang="ru"): for word in sent: if word.phonemes: phonemes += "".join(word.phonemes) phonemes = re.sub(re.compile(r'\s+'), ' ', phonemes).lstrip().rstrip() return phonemes def _text_to_sequence(self, text: str) -> list[int]: '''convert text to seq''' sequence = [] clean_text = self._ru_phonems(text) for symbol in clean_text: symbol_id = self.symbol_to_id[symbol] sequence += [symbol_id] return sequence def _intersperse(self, lst, item): result = [item] * (len(lst) * 2 + 1) result[1::2] = lst return result def _get_text(self, text: str) -> list[int]: text_norm = self._text_to_sequence(text) text_norm = self._intersperse(text_norm, 0) return text_norm def _add_silent(self, audio, silence_duration: float = 0.7, sample_rate: int = 22050): num_samples_silence = int(sample_rate * silence_duration) silence_array = np.zeros(num_samples_silence, dtype=np.float32) audio_with_silence = np.concatenate((audio, silence_array), axis=0) return audio_with_silence def save_wav(self, audio, path:str): '''save audio to wav''' scipy.io.wavfile.write(path, 22050, audio) def __call__(self, text: str, play = False): phoneme_ids = self._get_text(text) text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0) text_lengths = np.array([text.shape[1]], dtype=np.int64) scales = np.array( [0.667, 1, 0.8], dtype=np.float32, ) audio = self.model.run( None, { "input": text, "input_lengths": text_lengths, "scales": scales, "sid": None, }, )[0][0,0][0] audio = self._add_silent(audio) return audio