#!/usr/bin/env python import gradio as gr import PIL.Image import torch import torchvision.transforms.functional as TF from model import Model from utils import ( DEFAULT_STYLE_NAME, MAX_SEED, STYLE_NAMES, apply_style, randomize_seed_fn, ) SKETCH_ADAPTER_NAME = "TencentARC/t2i-adapter-sketch-sdxl-1.0" def create_demo(model: Model) -> gr.Blocks: def run( image: PIL.Image.Image, prompt: str, negative_prompt: str, style_name: str = DEFAULT_STYLE_NAME, num_steps: int = 25, guidance_scale: float = 5, adapter_conditioning_scale: float = 0.8, cond_tau: float = 0.8, seed: int = 0, progress=gr.Progress(track_tqdm=True), ) -> PIL.Image.Image: image = image.convert("RGB") image = TF.to_tensor(image) > 0.5 image = TF.to_pil_image(image.to(torch.float32)) prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) return model.run( image=image, prompt=prompt, negative_prompt=negative_prompt, adapter_name=SKETCH_ADAPTER_NAME, num_inference_steps=num_steps, guidance_scale=guidance_scale, adapter_conditioning_scale=adapter_conditioning_scale, cond_tau=cond_tau, seed=seed, apply_preprocess=False, )[1] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Group(): image = gr.Image( source="canvas", tool="sketch", type="pil", image_mode="L", invert_colors=True, shape=(1024, 1024), brush_radius=4, height=600, ) prompt = gr.Textbox(label="Prompt") run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): style = gr.Dropdown(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Style") negative_prompt = gr.Textbox(label="Negative prompt") num_steps = gr.Slider( label="Number of steps", minimum=1, maximum=50, step=1, value=25, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=10.0, step=0.1, value=5, ) adapter_conditioning_scale = gr.Slider( label="Adapter Conditioning Scale", minimum=0.5, maximum=1, step=0.1, value=0.8, ) cond_tau = gr.Slider( label="Fraction of timesteps for which adapter should be applied", minimum=0.5, maximum=1, step=0.1, value=0.8, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result = gr.Image(label="Result", height=600) inputs = [ image, prompt, negative_prompt, style, num_steps, guidance_scale, adapter_conditioning_scale, cond_tau, seed, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) negative_prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) return demo if __name__ == "__main__": model = Model(SKETCH_ADAPTER_NAME) demo = create_demo(model) demo.queue(max_size=20).launch()