#!/usr/bin/env python import random import gradio as gr import numpy as np import PIL.Image import torch from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter DESCRIPTION = "# T2I-Adapter-SDXL Sketch" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): model_id = "stabilityai/stable-diffusion-xl-base-1.0" adapter = T2IAdapter.from_pretrained( "Adapter/t2iadapter", subfolder="sketch_sdxl_1.0", torch_dtype=torch.float16, adapter_type="full_adapter_xl", ) scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionXLAdapterPipeline.from_pretrained( model_id, adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16", scheduler=scheduler, ) pipe.to(device) else: pipe = None MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def run( image: PIL.Image.Image, prompt: str, negative_prompt: str, num_steps=50, guidance_scale=7.5, seed=0, ) -> PIL.Image.Image: # Convert the input image, which is a boolean image, to a grayscale image whose value is 0 or 255. image = image.convert("L") generator = torch.Generator(device=device).manual_seed(seed) out = pipe( prompt=prompt, negative_prompt=negative_prompt, image=image, num_inference_steps=num_steps, generator=generator, guidance_scale=guidance_scale, ).images[0] return out with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image( source="canvas", tool="sketch", type="pil", image_mode="1", invert_colors=True, shape=(1024, 1024), brush_radius=20, height=600, ) prompt = gr.Textbox(label="Prompt") run_button = gr.Button("Run") with gr.Accordion("Advanced options", open=False): negative_prompt = gr.Textbox( label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality" ) num_steps = gr.Slider( label="Number of steps", minimum=1, maximum=100, step=1, value=50, ) guidance_scale = gr.Slider( label="Guidance scale", minimum=0.1, maximum=30.0, step=0.1, value=7.5, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Column(): result = gr.Image(label="Result", height=600) inputs = [ image, prompt, negative_prompt, num_steps, guidance_scale, seed, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=run, inputs=inputs, outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()