# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py import math import torch import torch.nn as nn import torch.nn.functional as F # FFN def FeedForward(dim, mult=4): inner_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim, bias=False), nn.GELU(), nn.Linear(inner_dim, dim, bias=False), ) def reshape_tensor(x, heads): bs, length, width = x.shape # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, length, heads, -1) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs, heads, length, -1) return x class PerceiverAttention(nn.Module): def __init__(self, *, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head ** -0.5 self.dim_head = dim_head self.heads = heads inner_dim = dim_head * heads self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D) """ x = self.norm1(x) latents = self.norm2(latents) b, l, _ = latents.shape q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk(2, dim=-1) q = reshape_tensor(q, self.heads) k = reshape_tensor(k, self.heads) v = reshape_tensor(v, self.heads) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) out = weight @ v out = out.permute(0, 2, 1, 3).reshape(b, l, -1) return self.to_out(out) class AttentionPool2d(nn.Module): def __init__(self, seq_len: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(seq_len + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x, return_all_tokens=False): # x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = x.permute(1, 0, 2) # (N(HW)C) => (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward(query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat( [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False) if return_all_tokens: return x else: return x[0] class Resampler(nn.Module): def __init__( self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output_dim=1024, ff_mult=4, ): super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) self.proj_in = nn.Linear(embedding_dim, dim) self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.in_dim = dim self.out_dim = output_dim self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList([ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), FeedForward(dim=dim, mult=ff_mult), ])) def forward(self, x): latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents latents = self.proj_out(latents) output_embeds = self.norm_out(latents) return output_embeds class ResamplerXL(nn.Module): def __init__( self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output1_dim=768, output2_dim=1280, ff_mult=4, ): super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) self.proj_in = nn.Linear(embedding_dim, dim) # self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(dim) self.in_dim = dim self.out_dim = output1_dim + output2_dim self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList([ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), FeedForward(dim=dim, mult=ff_mult), ])) self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim) self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim) self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim) def forward(self, x): latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents hidden_embeds = self.norm_out(latents) encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768] encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280] prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048] pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280] return prompt_embeds, pooled_prompt_embeds class ResamplerXLV2(nn.Module): def __init__( self, dim=1024, depth=8, dim_head=64, heads=16, num_queries=8, embedding_dim=768, output1_dim=768, output2_dim=1280, ff_mult=4, ): super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim ** 0.5) self.proj_in = nn.Linear(embedding_dim, dim) # self.proj_out = nn.Linear(dim, output_dim) self.norm_out = nn.LayerNorm(dim) self.in_dim = dim self.out_dim = output1_dim + output2_dim self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList([ PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), FeedForward(dim=dim, mult=ff_mult), ])) self.unet_proj_1 = nn.Linear(self.in_dim, output1_dim) self.unet_proj_2 = nn.Linear(self.in_dim, output2_dim) self.unet_attnpool = AttentionPool2d(num_queries, self.in_dim, heads, output2_dim) def forward(self, x, pooled_text_embeds=None): latents = self.latents.repeat(x.size(0), 1, 1) x = F.normalize(x) x = self.proj_in(x) for attn, ff in self.layers: latents = attn(x, latents) + latents latents = ff(latents) + latents hidden_embeds = self.norm_out(latents) encoder_hidden_1 = self.unet_proj_1(hidden_embeds) # [bs, 256, 768] encoder_hidden_2 = self.unet_proj_2(hidden_embeds) # [bs, 256, 1280] prompt_embeds = torch.cat([encoder_hidden_1, encoder_hidden_2], dim=-1) # [bs, 256, 2048] pooled_prompt_embeds = self.unet_attnpool(hidden_embeds) # [bs, 1280] return prompt_embeds, pooled_prompt_embeds class ResamplerXLIdentity(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, x, pooled_text_embeds=None): return x, pooled_text_embeds if __name__ == '__main__': image_proj_model = Resampler(dim=1024, depth=4, dim_head=64, heads=12, num_queries=1024, embedding_dim=1024, output_dim=1024, ff_mult=4) numel = 0 for name, param in image_proj_model.named_parameters(): numel += param.numel() print(f'Total params: {numel}')