import datetime, time import os, sys, argparse import math from glob import glob from pathlib import Path from typing import Optional import cv2 import numpy as np import torch from einops import rearrange, repeat from fire import Fire from omegaconf import OmegaConf from PIL import Image from torchvision.transforms import ToTensor sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) from sgm.util import default, instantiate_from_config def sample( input_path: str = "outputs/inputs/test_image.png", # Can either be image file or folder with image files ckpt: str = "checkpoints/svd.safetensors", num_frames: Optional[int] = None, num_steps: Optional[int] = None, version: str = "svd", fps_id: int = 6, motion_bucket_id: int = 127, cond_aug: float = 0.02, seed: int = 23, decoding_t: int = 1, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: str = "cuda", output_folder: Optional[str] = None, save_fps: int = 10, resize: Optional[bool] = False, ): """ Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. """ if version == "svd": num_frames = default(num_frames, 14) num_steps = default(num_steps, 25) output_folder = default(output_folder, "outputs/svd/") model_config = "scripts/sampling/configs/svd.yaml" elif version == "svd_xt": num_frames = default(num_frames, 25) num_steps = default(num_steps, 30) output_folder = default(output_folder, "outputs/svd_xt/") model_config = "scripts/sampling/configs/svd_xt.yaml" elif version == "svd_image_decoder": num_frames = default(num_frames, 14) num_steps = default(num_steps, 25) output_folder = default( output_folder, "outputs/svd_image_decoder/" ) model_config = "scripts/sampling/configs/svd_image_decoder.yaml" elif version == "svd_xt_image_decoder": num_frames = default(num_frames, 25) num_steps = default(num_steps, 30) output_folder = default( output_folder, "outputs/svd_xt_image_decoder/" ) model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml" else: raise ValueError(f"Version {version} does not exist.") model, filter = load_model( model_config, ckpt, device, num_frames, num_steps, ) torch.manual_seed(seed) path = Path(input_path) all_img_paths = [] if path.is_file(): if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): all_img_paths = [input_path] else: raise ValueError("Path is not valid image file.") elif path.is_dir(): all_img_paths = sorted( [ f for f in path.iterdir() if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] ] ) if len(all_img_paths) == 0: raise ValueError("Folder does not contain any images.") else: raise ValueError print(f'loaded {len(all_img_paths)} images.') os.makedirs(output_folder, exist_ok=True) for no, input_img_path in enumerate(all_img_paths): filepath, fullflname = os.path.split(input_img_path) filename, ext = os.path.splitext(fullflname) print(f'-sample {no+1}: {filename} ...') with Image.open(input_img_path) as image: if image.mode == "RGBA": image = image.convert("RGB") if resize: image = image.resize((1024,576)) w, h = image.size if h % 64 != 0 or w % 64 != 0: width, height = map(lambda x: x - x % 64, (w, h)) image = image.resize((width, height)) print( f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" ) image = ToTensor()(image) image = image * 2.0 - 1.0 image = image.unsqueeze(0).to(device) H, W = image.shape[2:] assert image.shape[1] == 3 F = 8 C = 4 shape = (num_frames, C, H // F, W // F) if (H, W) != (576, 1024): print( "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." ) if motion_bucket_id > 255: print( "WARNING: High motion bucket! This may lead to suboptimal performance." ) if fps_id < 5: print("WARNING: Small fps value! This may lead to suboptimal performance.") if fps_id > 30: print("WARNING: Large fps value! This may lead to suboptimal performance.") value_dict = {} value_dict["motion_bucket_id"] = motion_bucket_id value_dict["fps_id"] = fps_id value_dict["cond_aug"] = cond_aug value_dict["cond_frames_without_noise"] = image value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) with torch.no_grad(): with torch.autocast(device): batch, batch_uc = get_batch( get_unique_embedder_keys_from_conditioner(model.conditioner), value_dict, [1, num_frames], T=num_frames, device=device, ) c, uc = model.conditioner.get_unconditional_conditioning( batch, batch_uc=batch_uc, force_uc_zero_embeddings=[ "cond_frames", "cond_frames_without_noise", ], ) for k in ["crossattn", "concat"]: uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) randn = torch.randn(shape, device=device) additional_model_inputs = {} additional_model_inputs["image_only_indicator"] = torch.zeros( 2, num_frames ).to(device) #additional_model_inputs["image_only_indicator"][:,0] = 1 additional_model_inputs["num_video_frames"] = batch["num_video_frames"] def denoiser(input, sigma, c): return model.denoiser( model.model, input, sigma, c, **additional_model_inputs ) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) model.en_and_decode_n_samples_a_time = decoding_t samples_x = model.decode_first_stage(samples_z) samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) #base_count = len(glob(os.path.join(output_folder, "*.mp4"))) #video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") video_path = os.path.join(output_folder, f"{filename}.mp4") writer = cv2.VideoWriter( video_path, cv2.VideoWriter_fourcc(*'mp4v'), save_fps, (samples.shape[-1], samples.shape[-2]), ) #samples = embed_watermark(samples) #samples = filter(samples) vid = ( (rearrange(samples, "t c h w -> t h w c") * 255) .cpu() .numpy() .astype(np.uint8) ) for frame in vid: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) writer.write(frame) writer.release() print(f'Done! results saved in {output_folder}.') def get_unique_embedder_keys_from_conditioner(conditioner): return list(set([x.input_key for x in conditioner.embedders])) def get_batch(keys, value_dict, N, T, device): batch = {} batch_uc = {} for key in keys: if key == "fps_id": batch[key] = ( torch.tensor([value_dict["fps_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "motion_bucket_id": batch[key] = ( torch.tensor([value_dict["motion_bucket_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "cond_aug": batch[key] = repeat( torch.tensor([value_dict["cond_aug"]]).to(device), "1 -> b", b=math.prod(N), ) elif key == "cond_frames": batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) elif key == "cond_frames_without_noise": batch[key] = repeat( value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] ) else: batch[key] = value_dict[key] if T is not None: batch["num_video_frames"] = T for key in batch.keys(): if key not in batch_uc and isinstance(batch[key], torch.Tensor): batch_uc[key] = torch.clone(batch[key]) return batch, batch_uc def load_model( config: str, ckpt: str, device: str, num_frames: int, num_steps: int, ): config = OmegaConf.load(config) config.model.params.ckpt_path = ckpt if device == "cuda": config.model.params.conditioner_config.params.emb_models[ 0 ].params.open_clip_embedding_config.params.init_device = device config.model.params.sampler_config.params.num_steps = num_steps config.model.params.sampler_config.params.guider_config.params.num_frames = ( num_frames ) if device == "cuda": #with torch.device(device): model = instantiate_from_config(config.model).to(device).eval() else: model = instantiate_from_config(config.model).to(device).eval() filter = None #DeepFloydDataFiltering(verbose=False, device=device) return model, filter def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=23, help="seed for seed_everything") parser.add_argument("--ckpt", type=str, default=None, help="checkpoint path") parser.add_argument("--config", type=str, help="config (yaml) path") parser.add_argument("--input", type=str, default=None, help="image path or folder") parser.add_argument("--savedir", type=str, default=None, help="results saving path") parser.add_argument("--savefps", type=int, default=10, help="video fps to generate") parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) parser.add_argument("--frames", type=int, default=-1, help="frames num to inference") parser.add_argument("--fps", type=int, default=6, help="control the fps") parser.add_argument("--motion", type=int, default=127, help="control the motion magnitude") parser.add_argument("--cond_aug", type=float, default=0.02, help="adding noise to input image") parser.add_argument("--decoding_t", type=int, default=1, help="frames num to decoding per time") parser.add_argument("--resize", action='store_true', default=False, help="resize all input to default resolution") return parser if __name__ == "__main__": now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") print("@SVD Inference: %s"%now) #Fire(sample) parser = get_parser() args = parser.parse_args() sample(input_path=args.input, ckpt=args.ckpt, num_frames=args.frames, num_steps=args.ddim_steps, \ fps_id=args.fps, motion_bucket_id=args.motion, cond_aug=args.cond_aug, seed=args.seed, \ decoding_t=args.decoding_t, output_folder=args.savedir, save_fps=args.savefps, resize=args.resize)