import math from inspect import isfunction import torch import torch as th from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False from lvdm.common import ( checkpoint, exists, uniq, default, max_neg_value, init_ ) from lvdm.basics import ( conv_nd, zero_module, normalization ) class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) # --------------------------------------------------------------------------------------------------- class RelativePosition(nn.Module): """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """ def __init__(self, num_units, max_relative_position): super().__init__() self.num_units = num_units self.max_relative_position = max_relative_position self.embeddings_table = nn.Parameter(th.Tensor(max_relative_position * 2 + 1, num_units)) nn.init.xavier_uniform_(self.embeddings_table) def forward(self, length_q, length_k): device = self.embeddings_table.device range_vec_q = th.arange(length_q, device=device) range_vec_k = th.arange(length_k, device=device) distance_mat = range_vec_k[None, :] - range_vec_q[:, None] distance_mat_clipped = th.clamp(distance_mat, -self.max_relative_position, self.max_relative_position) final_mat = distance_mat_clipped + self.max_relative_position # final_mat = th.LongTensor(final_mat).to(self.embeddings_table.device) # final_mat = th.tensor(final_mat, device=self.embeddings_table.device, dtype=torch.long) final_mat = final_mat.long() embeddings = self.embeddings_table[final_mat] return embeddings class TemporalCrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., temporal_length=None, # For relative positional representation and image-video joint training. image_length=None, # For image-video joint training. use_relative_position=False, # whether use relative positional representation in temporal attention. img_video_joint_train=False, # For image-video joint training. use_tempoal_causal_attn=False, bidirectional_causal_attn=False, tempoal_attn_type=None, joint_train_mode="same_batch", **kwargs, ): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.context_dim = context_dim self.scale = dim_head ** -0.5 self.heads = heads self.temporal_length = temporal_length self.use_relative_position = use_relative_position self.img_video_joint_train = img_video_joint_train self.bidirectional_causal_attn = bidirectional_causal_attn self.joint_train_mode = joint_train_mode assert(joint_train_mode in ["same_batch", "diff_batch"]) self.tempoal_attn_type = tempoal_attn_type if bidirectional_causal_attn: assert use_tempoal_causal_attn if tempoal_attn_type: assert(tempoal_attn_type in ['sparse_causal', 'sparse_causal_first']) assert(not use_tempoal_causal_attn) assert(not (img_video_joint_train and (self.joint_train_mode == "same_batch"))) self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) assert(not (img_video_joint_train and (self.joint_train_mode == "same_batch") and use_tempoal_causal_attn)) if img_video_joint_train: if self.joint_train_mode == "same_batch": mask = torch.ones([1, temporal_length+image_length, temporal_length+image_length]) # mask[:, image_length:, :] = 0 # mask[:, :, image_length:] = 0 mask[:, temporal_length:, :] = 0 mask[:, :, temporal_length:] = 0 self.mask = mask else: self.mask = None elif use_tempoal_causal_attn: # normal causal attn self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) elif tempoal_attn_type == 'sparse_causal': # all frames interact with only the `prev` & self frame mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() # true indicates keeping mask2 = torch.zeros([1, temporal_length, temporal_length]) # initialize to same shape with mask1 mask2[:,2:temporal_length, :temporal_length-2] = torch.tril(torch.ones([1,temporal_length-2, temporal_length-2])) mask2=(1-mask2).bool() # false indicates masking self.mask = mask1 & mask2 elif tempoal_attn_type == 'sparse_causal_first': # all frames interact with only the `first` & self frame mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() # true indicates keeping mask2 = torch.zeros([1, temporal_length, temporal_length]) mask2[:,2:temporal_length, 1:temporal_length-1] = torch.tril(torch.ones([1,temporal_length-2, temporal_length-2])) mask2=(1-mask2).bool() # false indicates masking self.mask = mask1 & mask2 else: self.mask = None if use_relative_position: assert(temporal_length is not None) self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) nn.init.constant_(self.to_q.weight, 0) nn.init.constant_(self.to_k.weight, 0) nn.init.constant_(self.to_v.weight, 0) nn.init.constant_(self.to_out[0].weight, 0) nn.init.constant_(self.to_out[0].bias, 0) def forward(self, x, context=None, mask=None): # if context is None: # print(f'[Temp Attn] x={x.shape},context=None') # else: # print(f'[Temp Attn] x={x.shape},context={context.shape}') nh = self.heads out = x q = self.to_q(out) # if context is not None: # print(f'temporal context 1 ={context.shape}') # print(f'x={x.shape}') context = default(context, x) # print(f'temporal context 2 ={context.shape}') k = self.to_k(context) v = self.to_v(context) # print(f'q ={q.shape},k={k.shape}') q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=nh), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if self.use_relative_position: len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] k2 = self.relative_position_k(len_q, len_k) sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check sim += sim2 # print('mask',mask) if exists(self.mask): if mask is None: mask = self.mask.to(sim.device) else: mask = self.mask.to(sim.device).bool() & mask #.to(sim.device) else: mask = mask # if self.img_video_joint_train: # # process mask (make mask same shape with sim) # c, h, w = mask.shape # c, t, s = sim.shape # # assert(h == w and t == s),f"mask={mask.shape}, sim={sim.shape}, h={h}, w={w}, t={t}, s={s}" # if h > t: # mask = mask[:, :t, :] # elif h < t: # pad zeros to mask (no attention) only initial mask =1 area compute weights # mask_ = torch.zeros([c,t,w]).to(mask.device) # mask_[:, :h, :] = mask # mask = mask_ # c, h, w = mask.shape # if w > s: # mask = mask[:, :, :s] # elif w < s: # pad zeros to mask # mask_ = torch.zeros([c,h,s]).to(mask.device) # mask_[:, :, :w] = mask # mask = mask_ # max_neg_value = -torch.finfo(sim.dtype).max # sim = sim.float().masked_fill(mask == 0, max_neg_value) if mask is not None: max_neg_value = -1e9 sim = sim + (1-mask.float()) * max_neg_value # 1=masking,0=no masking # print('sim after masking: ', sim) # if torch.isnan(sim).any() or torch.isinf(sim).any() or (not sim.any()): # print(f'sim [after masking], isnan={torch.isnan(sim).any()}, isinf={torch.isinf(sim).any()}, allzero={not sim.any()}') attn = sim.softmax(dim=-1) # print('attn after softmax: ', attn) # if torch.isnan(attn).any() or torch.isinf(attn).any() or (not attn.any()): # print(f'attn [after softmax], isnan={torch.isnan(attn).any()}, isinf={torch.isinf(attn).any()}, allzero={not attn.any()}') # attn = torch.where(torch.isnan(attn), torch.full_like(attn,0), attn) # if torch.isinf(attn.detach()).any(): # import pdb;pdb.set_trace() # if torch.isnan(attn.detach()).any(): # import pdb;pdb.set_trace() out = einsum('b i j, b j d -> b i d', attn, v) if self.bidirectional_causal_attn: mask_reverse = torch.triu(torch.ones([1, self.temporal_length, self.temporal_length], device=sim.device)) sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value) attn_reverse = sim_reverse.softmax(dim=-1) out_reverse = einsum('b i j, b j d -> b i d', attn_reverse, v) out += out_reverse if self.use_relative_position: v2 = self.relative_position_v(len_q, len_v) out2 = einsum('b t s, t s d -> b t d', attn, v2) # TODO check out += out2 # TODO check:先add还是先merge head?先计算rpr,on split head之后的数据,然后再merge。 out = rearrange(out, '(b h) n d -> b n (h d)', h=nh) # merge head return self.to_out(out) class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., sa_shared_kv=False, shared_type='only_first', **kwargs,): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.sa_shared_kv = sa_shared_kv assert(shared_type in ['only_first', 'all_frames', 'first_and_prev', 'only_prev', 'full', 'causal', 'full_qkv']) self.shared_type = shared_type self.dim_head = dim_head self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) if XFORMERS_IS_AVAILBLE: self.forward = self.efficient_forward def forward(self, x, context=None, mask=None): h = self.heads b = x.shape[0] q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) if self.sa_shared_kv: if self.shared_type == 'only_first': k,v = map(lambda xx: rearrange(xx[0].unsqueeze(0), 'b n c -> (b n) c').unsqueeze(0).repeat(b,1,1), (k,v)) else: raise NotImplementedError q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) def efficient_forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class VideoSpatialCrossAttention(CrossAttention): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0): super().__init__(query_dim, context_dim, heads, dim_head, dropout) def forward(self, x, context=None, mask=None): b, c, t, h, w = x.shape if context is not None: context = context.repeat(t, 1, 1) x = super.forward(spatial_attn_reshape(x), context=context) + x return spatial_attn_reshape_back(x,b,h) class BasicTransformerBlockST(nn.Module): def __init__(self, # Spatial Stuff dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, # Temporal Stuff temporal_length=None, image_length=None, use_relative_position=True, img_video_joint_train=False, cross_attn_on_tempoal=False, temporal_crossattn_type="selfattn", order="stst", temporalcrossfirst=False, temporal_context_dim=None, split_stcontext=False, local_spatial_temporal_attn=False, window_size=2, **kwargs, ): super().__init__() # Self attention self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) # cross attention if context is not None self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, **kwargs,) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint self.order = order assert(self.order in ["stst", "sstt", "st_parallel"]) self.temporalcrossfirst = temporalcrossfirst self.split_stcontext = split_stcontext self.local_spatial_temporal_attn = local_spatial_temporal_attn if self.local_spatial_temporal_attn: assert(self.order == 'stst') assert(self.order == 'stst') self.window_size = window_size if not split_stcontext: temporal_context_dim = context_dim # Temporal attention assert(temporal_crossattn_type in ["selfattn", "crossattn", "skip"]) self.temporal_crossattn_type = temporal_crossattn_type self.attn1_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, temporal_length=temporal_length, image_length=image_length, use_relative_position=use_relative_position, img_video_joint_train=img_video_joint_train, **kwargs, ) self.attn2_tmp = TemporalCrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, # cross attn context_dim=temporal_context_dim if temporal_crossattn_type == "crossattn" else None, # temporal attn temporal_length=temporal_length, image_length=image_length, use_relative_position=use_relative_position, img_video_joint_train=img_video_joint_train, **kwargs, ) self.norm4 = nn.LayerNorm(dim) self.norm5 = nn.LayerNorm(dim) # self.norm1_tmp = nn.LayerNorm(dim) # self.norm2_tmp = nn.LayerNorm(dim) ############################################################################################################################################## def forward(self, x, context=None, temporal_context=None, no_temporal_attn=None, attn_mask=None, **kwargs): # print(f'no_temporal_attn={no_temporal_attn}') if not self.split_stcontext: # st cross attention use the same context vector temporal_context = context.detach().clone() if context is None and temporal_context is None: # self-attention models if no_temporal_attn: raise NotImplementedError return checkpoint(self._forward_nocontext, (x), self.parameters(), self.checkpoint) else: # cross-attention models if no_temporal_attn: forward_func = self._forward_no_temporal_attn else: forward_func = self._forward inputs = (x, context, temporal_context) if temporal_context is not None else (x, context) return checkpoint(forward_func, inputs, self.parameters(), self.checkpoint) # if attn_mask is not None: # return checkpoint(self._forward, (x, context, temporal_context, attn_mask), self.parameters(), self.checkpoint) # return checkpoint(self._forward, (x, context, temporal_context), self.parameters(), self.checkpoint) def _forward(self, x, context=None, temporal_context=None, mask=None, no_temporal_attn=None, ): assert(x.dim() == 5), f"x shape = {x.shape}" b, c, t, h, w = x.shape if self.order in ["stst", "sstt"]: x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, mask=mask,)#no_temporal_attn=no_temporal_attn, elif self.order == "st_parallel": x = self._st_cross_attn_parallel(x, context, temporal_context=temporal_context, order=self.order,)#no_temporal_attn=no_temporal_attn, else: raise NotImplementedError x = self.ff(self.norm3(x)) + x if (no_temporal_attn is None) or (not no_temporal_attn): x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d elif no_temporal_attn: x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d return x def _forward_no_temporal_attn(self, x, context=None, temporal_context=None, ): # temporary implementation :( # because checkpoint does not support non-tensor inputs currently. assert(x.dim() == 5), f"x shape = {x.shape}" b, c, t, h, w = x.shape if self.order in ["stst", "sstt"]: # x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,) # mask = torch.zeros([1, t, t], device=x.device).bool() if context is None else torch.zeros([1, context.shape[1], t], device=x.device).bool() mask = torch.zeros([1, t, t], device=x.device).bool() x = self._st_cross_attn(x, context, temporal_context=temporal_context, order=self.order, mask=mask,) elif self.order == "st_parallel": x = self._st_cross_attn_parallel(x, context, temporal_context=temporal_context, order=self.order, no_temporal_attn=True,) else: raise NotImplementedError x = self.ff(self.norm3(x)) + x x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d # x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d return x def _forward_nocontext(self, x, no_temporal_attn=None): assert(x.dim() == 5), f"x shape = {x.shape}" b, c, t, h, w = x.shape if self.order in ["stst", "sstt"]: x = self._st_cross_attn(x, order=self.order, no_temporal_attn=no_temporal_attn) elif self.order == "st_parallel": x = self._st_cross_attn_parallel(x, order=self.order, no_temporal_attn=no_temporal_attn) else: raise NotImplementedError x = self.ff(self.norm3(x)) + x x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d return x ############################################################################################################################################## def _st_cross_attn(self, x, context=None, temporal_context=None, order="stst", mask=None): #no_temporal_attn=None, b, c, t, h, w = x.shape # print(f'[_st_cross_attn input] x={x.shape}, context={context.shape}') if order == "stst": # spatial self attention x = rearrange(x, 'b c t h w -> (b t) (h w) c') x = self.attn1(self.norm1(x)) + x x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h) # temporal self attention # if (no_temporal_attn is None) or (not no_temporal_attn): if self.local_spatial_temporal_attn: x = local_spatial_temporal_attn_reshape(x,window_size=self.window_size) else: x = rearrange(x, 'b c t h w -> (b h w) t c') x = self.attn1_tmp(self.norm4(x), mask=mask) + x if self.local_spatial_temporal_attn: x = local_spatial_temporal_attn_reshape_back(x, window_size=self.window_size, b=b, h=h, w=w, t=t) else: x = rearrange(x, '(b h w) t c -> b c t h w', b=b,h=h,w=w) # 3d -> 5d # spatial cross attention x = rearrange(x, 'b c t h w -> (b t) (h w) c') # context_ = context.repeat(t, 1, 1) if context is not None else None # print(f'[before spatial cross] context={context.shape}') if context is not None: if context.shape[0] == t: # img captions no_temporal_attn or context_ = context else: context_ = [] for i in range(context.shape[0]): context_.append(context[i].unsqueeze(0).repeat(t, 1, 1)) context_ = torch.cat(context_,dim=0) else: context_ = None # print(f'[before spatial cross] x={x.shape}, context_={context_.shape}') x = self.attn2(self.norm2(x), context=context_) + x # temporal cross attention # if (no_temporal_attn is None) or (not no_temporal_attn): x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h) x = rearrange(x, 'b c t h w -> (b h w) t c') if self.temporal_crossattn_type == "crossattn": # tmporal cross attention if temporal_context is not None: # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}') temporal_context = torch.cat([context, temporal_context], dim=1) # blc # print(f'STATTN after concat temporal_context={temporal_context.shape}') temporal_context = temporal_context.repeat(h*w, 1,1) # print(f'after repeat temporal_context={temporal_context.shape}') else: temporal_context = context[0:1,...].repeat(h*w, 1, 1) # print(f'STATTN after concat x={x.shape}') x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x elif self.temporal_crossattn_type == "selfattn": # temporal self attention x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x elif self.temporal_crossattn_type == "skip": # no temporal cross and self attention pass else: raise NotImplementedError elif order == "sstt": # spatial self attention x = rearrange(x, 'b c t h w -> (b t) (h w) c') x = self.attn1(self.norm1(x)) + x # spatial cross attention context_ = context.repeat(t, 1, 1) if context is not None else None x = self.attn2(self.norm2(x), context=context_) + x x = rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h) if (no_temporal_attn is None) or (not no_temporal_attn): if self.temporalcrossfirst: # temporal cross attention if self.temporal_crossattn_type == "crossattn": # if temporal_context is not None: temporal_context = context.repeat(h*w, 1, 1) x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x elif self.temporal_crossattn_type == "selfattn": x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x elif self.temporal_crossattn_type == "skip": pass else: raise NotImplementedError # temporal self attention x = rearrange(x, 'b c t h w -> (b h w) t c') x = self.attn1_tmp(self.norm4(x), mask=mask) + x else: # temporal self attention x = rearrange(x, 'b c t h w -> (b h w) t c') x = self.attn1_tmp(self.norm4(x), mask=mask) + x # temporal cross attention if self.temporal_crossattn_type == "crossattn": if temporal_context is not None: temporal_context = context.repeat(h*w, 1, 1) x = self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) + x elif self.temporal_crossattn_type == "selfattn": x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x elif self.temporal_crossattn_type == "skip": pass else: raise NotImplementedError else: raise NotImplementedError return x def _st_cross_attn_parallel(self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None): """ order: x -> Self Attn -> Cross Attn -> attn_s x -> Temp Self Attn -> attn_t x' = x + attn_s + attn_t """ if no_temporal_attn is not None: raise NotImplementedError B, C, T, H, W = x.shape # spatial self attention h = x h = rearrange(h, 'b c t h w -> (b t) (h w) c') h = self.attn1(self.norm1(h)) + h # spatial cross # context_ = context.repeat(T, 1, 1) if context is not None else None if context is not None: context_ = [] for i in range(context.shape[0]): context_.append(context[i].unsqueeze(0).repeat(T, 1, 1)) context_ = torch.cat(context_,dim=0) else: context_ = None h = self.attn2(self.norm2(h), context=context_) + h h = rearrange(h, '(b t) (h w) c -> b c t h w', b=B, h=H) # temporal self h2 = x h2 = rearrange(h2, 'b c t h w -> (b h w) t c') h2 = self.attn1_tmp(self.norm4(h2))# + h2 h2 = rearrange(h2, '(b h w) t c -> b c t h w', b=B, h=H, w=W) out = h + h2 return rearrange(out, 'b c t h w -> (b h w) t c') ############################################################################################################################################## def spatial_attn_reshape(x): return rearrange(x, 'b c t h w -> (b t) (h w) c') def spatial_attn_reshape_back(x,b,h): return rearrange(x, '(b t) (h w) c -> b c t h w', b=b,h=h) def temporal_attn_reshape(x): return rearrange(x, 'b c t h w -> (b h w) t c') def temporal_attn_reshape_back(x, b,h,w): return rearrange(x, '(b h w) t c -> b c t h w', b=b, h=h, w=w) def local_spatial_temporal_attn_reshape(x, window_size): B, C, T, H, W = x.shape NH = H // window_size NW = W // window_size # x = x.view(B, C, T, NH, window_size, NW, window_size) # tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous() # tokens = tokens.view(-1, window_size, window_size, C) x = rearrange(x, 'b c t (nh wh) (nw ww) -> b c t nh wh nw ww', nh=NH, nw=NW, wh=window_size, ww=window_size).contiguous() # # B, C, T, NH, NW, window_size, window_size x = rearrange(x, 'b c t nh wh nw ww -> (b nh nw) (t wh ww) c') # (B, NH, NW) (T, window_size, window_size) C return x def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t): B, L, C = x.shape NH = h // window_size NW = w // window_size x = rearrange(x, '(b nh nw) (t wh ww) c -> b c t nh wh nw ww', b=b, nh=NH, nw=NW, t=t, wh=window_size, ww=window_size) x = rearrange(x, 'b c t nh wh nw ww -> b c t (nh wh) (nw ww)') return x class SpatialTemporalTransformer(nn.Module): """ Transformer block for video-like data (5D tensor). First, project the input (aka embedding) with NO reshape. Then apply standard transformer action. The 5D -> 3D reshape operation will be done in the specific attention module. """ def __init__( self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, # Temporal stuff temporal_length=None, image_length=None, use_relative_position=True, img_video_joint_train=False, cross_attn_on_tempoal=False, temporal_crossattn_type=False, order="stst", temporalcrossfirst=False, split_stcontext=False, temporal_context_dim=None, **kwargs, ): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv3d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlockST( inner_dim, n_heads, d_head, dropout=dropout, # cross attn context_dim=context_dim, # temporal attn temporal_length=temporal_length, image_length=image_length, use_relative_position=use_relative_position, img_video_joint_train=img_video_joint_train, temporal_crossattn_type=temporal_crossattn_type, order=order, temporalcrossfirst=temporalcrossfirst, split_stcontext=split_stcontext, temporal_context_dim=temporal_context_dim, **kwargs ) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None, temporal_context=None, **kwargs): # note: if no context is given, cross-attention defaults to self-attention assert(x.dim() == 5), f"x shape = {x.shape}" b, c, t, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) for block in self.transformer_blocks: x = block(x, context=context, temporal_context=temporal_context, **kwargs) x = self.proj_out(x) return x + x_in # --------------------------------------------------------------------------------------------------- class STAttentionBlock2(nn.Module): def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, # not used, only used in ResBlock use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy temporal_length=16, # used in relative positional representation. image_length=8, # used for image-video joint training. use_relative_position=False, # whether use relative positional representation in temporal attention. img_video_joint_train=False, # norm_type="groupnorm", attn_norm_type="group", use_tempoal_causal_attn=False, ): """ version 1: guided_diffusion implemented version version 2: remove args input argument """ super().__init__() if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.temporal_length = temporal_length self.image_length = image_length self.use_relative_position = use_relative_position self.img_video_joint_train = img_video_joint_train self.attn_norm_type = attn_norm_type assert(self.attn_norm_type in ["group", "no_norm"]) self.use_tempoal_causal_attn = use_tempoal_causal_attn if self.attn_norm_type == "group": self.norm_s = normalization(channels) self.norm_t = normalization(channels) self.qkv_s = conv_nd(1, channels, channels * 3, 1) self.qkv_t = conv_nd(1, channels, channels * 3, 1) if self.img_video_joint_train: mask = th.ones([1, temporal_length+image_length, temporal_length+image_length]) mask[:, temporal_length:, :] = 0 mask[:, :, temporal_length:] = 0 self.register_buffer("mask", mask) else: self.mask = None if use_new_attention_order: # split qkv before split heads self.attention_s = QKVAttention(self.num_heads) self.attention_t = QKVAttention(self.num_heads) else: # split heads before split qkv self.attention_s = QKVAttentionLegacy(self.num_heads) self.attention_t = QKVAttentionLegacy(self.num_heads) if use_relative_position: self.relative_position_k = RelativePosition(num_units=channels // self.num_heads, max_relative_position=temporal_length) self.relative_position_v = RelativePosition(num_units=channels // self.num_heads, max_relative_position=temporal_length) self.proj_out_s = zero_module(conv_nd(1, channels, channels, 1)) # conv_dim, in_channels, out_channels, kernel_size self.proj_out_t = zero_module(conv_nd(1, channels, channels, 1)) # conv_dim, in_channels, out_channels, kernel_size def forward(self, x, mask=None): b, c, t, h, w = x.shape # spatial out = rearrange(x, 'b c t h w -> (b t) c (h w)') if self.attn_norm_type == "no_norm": qkv = self.qkv_s(out) else: qkv = self.qkv_s(self.norm_s(out)) out = self.attention_s(qkv) out = self.proj_out_s(out) out = rearrange(out, '(b t) c (h w) -> b c t h w', b=b,h=h) x += out # temporal out = rearrange(x, 'b c t h w -> (b h w) c t') if self.attn_norm_type == "no_norm": qkv = self.qkv_t(out) else: qkv = self.qkv_t(self.norm_t(out)) # relative positional embedding if self.use_relative_position: len_q = qkv.size()[-1] len_k, len_v = len_q, len_q k_rp = self.relative_position_k(len_q, len_k) v_rp = self.relative_position_v(len_q, len_v) #[T,T,head_dim] out = self.attention_t(qkv, rp=(k_rp, v_rp), mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn) else: out = self.attention_t(qkv, rp=None, mask=self.mask, use_tempoal_causal_attn=self.use_tempoal_causal_attn) out = self.proj_out_t(out) out = rearrange(out, '(b h w) c t -> b c t h w', b=b,h=h,w=w) return (x + out) # --------------------------------------------------------------------------------------------------------------- class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, rp=None, mask=None): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ if rp is not None or mask is not None: raise NotImplementedError bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) # --------------------------------------------------------------------------------------------------------------- class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False): """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) # print('qkv', qkv.size()) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) # print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length) weight = th.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards # weight:[b,t,s] b=bs*n_heads*T if rp is not None: k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48] weight2 = th.einsum( 'bct,tsc->bst', (q * scale).view(bs * self.n_heads, ch, length), k_rp ) weight += weight2 if use_tempoal_causal_attn: # weight = torch.tril(weight) assert(mask is None), f'Not implemented for merging two masks!' mask = torch.tril(torch.ones(weight.shape)) else: if mask is not None: # only keep upper-left matrix # process mask c, t, _ = weight.shape if mask.shape[-1] > t: mask = mask[:, :t, :t] elif mask.shape[-1] < t: # pad ones mask_ = th.zeros([c,t,t]).to(mask.device) t_ = mask.shape[-1] mask_[:, :t_, :t_] = mask mask = mask_ else: assert(weight.shape[-1] == mask.shape[-1]), f'weight={weight.shape}, mask={mask.shape}' if mask is not None: INF = -1e8 #float('-inf') weight = weight.float().masked_fill(mask == 0, INF) weight = F.softmax(weight.float(), dim=-1).type(weight.dtype) #[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes # weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) #[256, 48, 8] [b, head_dim, t] if rp is not None: a2 = th.einsum( "bts,tsc->btc", weight, v_rp ).transpose(1,2) # btc->bct a += a2 return a.reshape(bs, -1, length) # --------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------