# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Reference code: https://github.com/yxli2123/LoftQ/blob/main/utils.py # Reference paper: https://arxiv.org/abs/2310.08659 from __future__ import annotations import logging import os from typing import Callable, Optional, Union import torch from huggingface_hub import snapshot_download from huggingface_hub.utils import LocalEntryNotFoundError from safetensors import SafetensorError, safe_open from transformers.utils import cached_file from transformers.utils.hub import get_checkpoint_shard_files from peft.import_utils import is_bnb_4bit_available, is_bnb_available class NFQuantizer: def __init__(self, num_bits=2, device="cuda", method="normal", block_size=64, *args, **kwargs): super().__init__(*args, **kwargs) self.num_bits = num_bits self.device = device self.method = method self.block_size = block_size if self.method == "normal": self.norm_lookup_table = self.create_normal_map(num_bits=self.num_bits) self.norm_lookup_table = self.norm_lookup_table.to(device) elif self.method == "uniform": self.norm_lookup_table = self.create_uniform_map(num_bits=self.num_bits) self.norm_lookup_table = self.norm_lookup_table.to(device) else: raise NotImplementedError("Other quantization methods not supported yet.") @staticmethod def create_uniform_map(symmetric=False, num_bits=4): if symmetric: # print("symmetric uniform quantization") negative = torch.linspace(-1, 0, 2 ** (num_bits - 1)) positive = torch.linspace(0, 1, 2 ** (num_bits - 1)) table = torch.cat([negative, positive[1:]]) else: # print("asymmetric uniform quantization") table = torch.linspace(-1, 1, 2**num_bits) return table @staticmethod def create_normal_map(offset=0.9677083, symmetric=False, num_bits=2): try: from scipy.stats import norm except ImportError: raise ImportError("The required package 'scipy' is not installed. Please install it to continue.") variations = 2**num_bits if symmetric: v = norm.ppf(torch.linspace(1 - offset, offset, variations + 1)).tolist() values = [] for index in range(len(v) - 1): values.append(0.5 * v[index] + 0.5 * v[index + 1]) v = values else: # one more positive value, this is an asymmetric type v1 = norm.ppf(torch.linspace(offset, 0.5, variations // 2 + 1)[:-1]).tolist() v2 = [0] v3 = (-norm.ppf(torch.linspace(offset, 0.5, variations // 2)[:-1])).tolist() v = v1 + v2 + v3 values = torch.Tensor(v) values = values.sort().values values /= values.max() return values def quantize_tensor(self, weight): max_abs = torch.abs(weight).max() weight_normed = weight / max_abs weight_normed_expanded = weight_normed.unsqueeze(-1) # Reshape L to have the same number of dimensions as X_expanded L_reshaped = torch.tensor(self.norm_lookup_table).reshape(1, -1) # Calculate the absolute difference between X_expanded and L_reshaped abs_diff = torch.abs(weight_normed_expanded - L_reshaped) # Find the index of the minimum absolute difference for each element qweight = torch.argmin(abs_diff, dim=-1) return qweight, max_abs def dequantize_tensor(self, qweight, max_abs): qweight_flatten = qweight.flatten() weight_normed = self.norm_lookup_table[qweight_flatten] weight = weight_normed * max_abs weight = weight.reshape(qweight.shape) return weight def quantize_block(self, weight): if len(weight.shape) != 2: raise ValueError(f"Only support 2D matrix, but your input has {len(weight.shape)} dimensions.") if weight.shape[0] * weight.shape[1] % self.block_size != 0: raise ValueError( f"Weight with shape ({weight.shape[0]} x {weight.shape[1]}) " f"is not dividable by block size {self.block_size}." ) M, N = weight.shape device = weight.device # Quantization weight_flatten = weight.flatten() # (M*N, ) weight_block = weight_flatten.reshape(-1, self.block_size) # (L, B), L = M * N / B if self.method == "normal": weight_max = weight_block.abs().max(dim=-1)[0] # (L, 1) elif self.method == "uniform": weight_max = weight_block.mean(dim=-1) + 2.5 * weight_block.std(dim=-1) else: raise NotImplementedError("Method not supported yet.") weight_max = weight_max.unsqueeze(-1) weight_divabs = weight_block / weight_max # (L, B) weight_divabs = weight_divabs.unsqueeze(-1) # (L, B, 1) L_reshaped = self.norm_lookup_table.reshape(1, -1) # (1, 2**K) abs_diff = torch.abs(weight_divabs - L_reshaped) # (L, B, 2**K) qweight = torch.argmin(abs_diff, dim=-1) # (L, B) # Pack multiple k-bit into uint8 qweight = qweight.reshape(-1, 8 // self.num_bits) qweight_pack = torch.zeros((M * N // 8 * self.num_bits, 1), dtype=torch.uint8, device=device) # data format example: # [1, 0, 3, 2] or [01, 00, 11, 10] -> [10110001], LIFO for i in range(8 // self.num_bits): qweight[:, i] = qweight[:, i] << i * self.num_bits qweight_pack[:, 0] |= qweight[:, i] return qweight_pack, weight_max, weight.shape def dequantize_block(self, qweight, weight_max, weight_shape): # unpack weight device = qweight.device weight = torch.zeros((qweight.shape[0], 8 // self.num_bits), dtype=torch.float32, device=device) for i in range(8 // self.num_bits): lookup_table_idx = qweight.to(torch.long) % 2**self.num_bits # get the most right 2 bits lookup_table_idx = lookup_table_idx.to(torch.long) weight[:, i] = self.norm_lookup_table[lookup_table_idx].squeeze() qweight = qweight >> self.num_bits # right shift 2 bits of the original data weight_block = weight.reshape(-1, self.block_size) weight = weight_block * weight_max weight = weight.reshape(weight_shape) return weight def _low_rank_decomposition(weight, reduced_rank=32): """ :param weight: The matrix to decompose, of shape (H, W) :param reduced_rank: the final rank :return: """ matrix_dimension = len(weight.size()) if matrix_dimension != 2: raise ValueError(f"Only support 2D matrix, but your input has {matrix_dimension} dimensions.") # Use SVD to decompose a matrix, default full_matrices is False to save parameters U, S, Vh = torch.linalg.svd(weight, full_matrices=False) L = U @ (torch.sqrt(torch.diag(S)[:, 0:reduced_rank])) R = torch.sqrt(torch.diag(S)[0:reduced_rank, :]) @ Vh return {"L": L, "R": R, "U": U, "S": S, "Vh": Vh, "reduced_rank": reduced_rank} @torch.no_grad() def loftq_init(weight: Union[torch.Tensor, torch.nn.Parameter], num_bits: int, reduced_rank: int, num_iter=1): if is_bnb_available(): import bitsandbytes as bnb else: raise ValueError("bitsandbytes is not available, please install it to use LoftQ.") if num_bits not in [2, 4, 8]: raise ValueError("Only support 2, 4, 8 bits quantization") if num_iter <= 0: raise ValueError("Number of iterations must be greater than 0") out_feature, in_feature = weight.size() device = weight.device dtype = weight.dtype logging.info( f"Weight: ({out_feature}, {in_feature}) | Rank: {reduced_rank} " f"| Num Iter: {num_iter} | Num Bits: {num_bits}" ) if not is_bnb_4bit_available() or num_bits in [2, 8]: quantizer = NFQuantizer(num_bits=num_bits, device=device, method="normal", block_size=64) compute_device = device else: compute_device = "cuda" weight = weight.to(device=compute_device, dtype=torch.float32) res = weight.clone() for i in range(num_iter): torch.cuda.empty_cache() # Quantization if num_bits == 4 and is_bnb_4bit_available(): qweight = bnb.nn.Params4bit( res.to("cpu"), requires_grad=False, compress_statistics=False, quant_type="nf4" ).to(compute_device) dequantized_weight = bnb.functional.dequantize_4bit(qweight.data, qweight.quant_state) else: quantized_weight, max_abs, shape = quantizer.quantize_block(res) dequantized_weight = quantizer.dequantize_block(quantized_weight, max_abs, shape) res = weight - dequantized_weight # Decompose the residual by SVD output = _low_rank_decomposition(res, reduced_rank=reduced_rank) L, R, reduced_rank = output["L"], output["R"], output["reduced_rank"] res = weight - torch.mm(L, R) lora_A, lora_B = R, L return dequantized_weight.to(device=device, dtype=dtype), lora_A, lora_B @torch.no_grad() def _loftq_init_new(qweight, weight, num_bits: int, reduced_rank: int): import bitsandbytes as bnb if num_bits != 4: raise ValueError("Only 4 bit quantization supported at the moment.") if not is_bnb_4bit_available(): raise ValueError("bitsandbytes 4bit quantization is not available.") compute_device = "cuda" dequantized_weight = bnb.functional.dequantize_4bit(qweight.data, qweight.quant_state) weight = weight.to(device=compute_device, dtype=torch.float32) residual = weight - dequantized_weight torch.cuda.empty_cache() # Decompose the residualidual by SVD output = _low_rank_decomposition(residual, reduced_rank=reduced_rank) L, R, reduced_rank = output["L"], output["R"], output["reduced_rank"] return R, L class _SafetensorLoader: """ Simple utility class that loads tensors with safetensors from a single file or sharded files. Takes care of file name normalization etc. """ def __init__(self, peft_model, model_path): if model_path is None: try: model_path = snapshot_download(peft_model.base_model.config._name_or_path, local_files_only=True) except AttributeError as exc: raise ValueError( "The provided model does not appear to be a transformers model. In this case, you must pass the " "model_path to the safetensors file." ) from exc except LocalEntryNotFoundError as exc: raise ValueError( "The model.safetensors file must be present on disk, but it could not be found." ) from exc suffix = "model.safetensors" if not model_path.endswith(suffix): model_path = os.path.join(model_path, suffix) self.model_path = model_path self.base_model_prefix = getattr(peft_model.get_base_model(), "base_model_prefix", None) self.prefix = "base_model.model." self.is_sharded = False self.weight_map = None if not os.path.exists(model_path): # check if the file is sharded par_dir = model_path.rpartition(os.path.sep)[0] try: resolved_archive_file, sharded_metadata = get_checkpoint_shard_files( par_dir, cached_file(par_dir, "model.safetensors.index.json") ) except OSError as exc: raise FileNotFoundError( f"Could not find file for {model_path}, ensure that there is a (sharded) safetensors file of the model." ) from exc self.is_sharded = True # maps from 'model-X-of-Y.safetensors' to full file path file_map = {k.rpartition(os.path.sep)[-1]: k for k in resolved_archive_file} self.weight_map = {k: file_map[v] for k, v in sharded_metadata["weight_map"].items()} def get_tensor(self, name): if not self.is_sharded: file_path = self.model_path else: file_path = self.weight_map[name] with safe_open(file_path, framework="pt", device="cpu") as f: try: tensor = f.get_tensor(name) except SafetensorError as exc: # no matching key found, we probably need to remove the base model prefix if self.base_model_prefix: # remove 1 extra character for "." name = name[len(self.base_model_prefix) + 1 :] tensor = f.get_tensor(name) else: raise exc return tensor @torch.no_grad() def replace_lora_weights_loftq( peft_model, model_path: Optional[str] = None, adapter_name: str = "default", callback: Optional[Callable[[torch.nn.Module, str], bool]] = None, ): """ Replace the LoRA weights of a model quantized with bitsandbytes, using the LoftQ technique. The replacement is done on the fly by loading in the non-quantized weights from a locally stored safetensors model file and initializing the LoRA weights such that the quantization error between the original and quantized weights is minimized. As lazy loading is not possible with pickle, normal PyTorch checkpoint files cannot be supported. Depending on the model size, calling this function may take some time to finish. Args: peft_model (`PeftModel`): The model to replace the weights of. Must be a quantized PEFT model with LoRA layers. model_path (`Optional[str]`): The path to the model safetensors file. If the model is a Hugging Face model, this will be inferred from the model's config. Otherwise, it must be provided. adapter_name (`str`): The name of the adapter to replace the weights of. The default adapter name is "default". callback (`Optional[Callable[[PeftModel, str], bool]]`): A callback function that will be called after each module is replaced. The callback function should take the model and the name of the current module as input and return a boolean indicating whether the replacement should be kept. If the callback returns False, the replacement will be rolled back. This can be very useful to confirm that the LoftQ initialization actually decreases the quantization error of the model. As an example, this callback could generate logits for given input and compare it with the logits from the original, non-quanitzed model with the same input, and only return `True` if there is an improvement. As this is a greedy optimization, it's possible that calling this function multiple times yields incremental improvements. """ if not is_bnb_4bit_available(): raise ValueError("bitsandbytes must be installed and the model must be quantized in 4bits.") from peft.tuners.lora import Linear4bit # model_path = _check_model_path_loftq(model_path, peft_model) prefix = "base_model.model." any_match = False safetensor_loader = _SafetensorLoader(peft_model, model_path) # if too slow, consider adding tqdm as an option for name, module in peft_model.named_modules(): if not isinstance(module, Linear4bit): continue if not name.startswith(prefix): raise TypeError("The passed model does not appear to be a valid PeftModel") any_match = True name = name[len(prefix) :] tensor = safetensor_loader.get_tensor(name + ".weight") reduced_rank = module.r[adapter_name] lora_A, lora_B = _loftq_init_new(module.weight, tensor, num_bits=4, reduced_rank=reduced_rank) if not callback: module.lora_A[adapter_name].weight.data = lora_A module.lora_B[adapter_name].weight.data = lora_B continue lora_A_before = module.lora_A[adapter_name].weight.data lora_B_before = module.lora_B[adapter_name].weight.data module.lora_A[adapter_name].weight.data = lora_A module.lora_B[adapter_name].weight.data = lora_B should_replace = callback(peft_model, name) if not should_replace: # roll back module.lora_A[adapter_name].weight.data = lora_A_before module.lora_B[adapter_name].weight.data = lora_B_before del lora_A_before, lora_B_before if not any_match: raise ValueError("No bnb LoRA module found on the model")