# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py import logging from dataclasses import dataclass from typing import Any, Dict, Optional import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models import ModelMixin from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward from diffusers.utils import BaseOutput from diffusers.utils.torch_utils import maybe_allow_in_graph from einops import rearrange, repeat from torch import Tensor, nn logger = logging.getLogger(__name__) @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor @maybe_allow_in_graph class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d( in_channels, inner_dim, kernel_size=1, stride=1, padding=0 ) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d( inner_dim, in_channels, kernel_size=1, stride=1, padding=0 ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): # validate input dim if hidden_states.dim() != 5: raise ValueError( f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." ) # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = ( 1 - encoder_attention_mask.to(hidden_states.dtype) ) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # shenanigans for motion module video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") encoder_hidden_states = repeat( encoder_hidden_states, "b n c -> (b f) n c", f=video_length ) # 1. Input batch, _, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * width, inner_dim ) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * width, inner_dim ) hidden_states = self.proj_in(hidden_states) # 2. Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, encoder_attention_mask=encoder_attention_mask, cross_attention_kwargs=cross_attention_kwargs, ) # 3. Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, width, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, width, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) @maybe_allow_in_graph class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, norm_elementwise_affine: bool = True, unet_use_cross_frame_attention: bool = False, unet_use_temporal_attention: bool = False, final_dropout: bool = False, ): super().__init__() self.only_cross_attention = only_cross_attention self.use_ada_layer_norm = num_embeds_ada_norm is not None self.unet_use_cross_frame_attention = unet_use_cross_frame_attention self.unet_use_temporal_attention = unet_use_temporal_attention # Define 3 blocks. Each block has its own normalization layer. # Self-Attn / SC-Attn if self.use_ada_layer_norm: self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) else: self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) if unet_use_cross_frame_attention: # this isn't actually implemented anywhere in the AnimateDiff codebase or in Diffusers... raise NotImplementedError("SC-Attn is not implemented yet.") else: self.attn1 = Attention( query_dim=dim, cross_attention_dim=( cross_attention_dim if only_cross_attention else None ), heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) # 2. Cross-Attn if cross_attention_dim is not None: self.norm2 = ( AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) ) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) # is self-attn if encoder_hidden_states is none else: self.norm2 = None self.attn2 = None # 3. Feed-forward self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, ) # 4. Temporal Attn assert unet_use_temporal_attention is not None if unet_use_temporal_attention: self.attn_temp = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) nn.init.zeros_(self.attn_temp.to_out[0].weight.data) if self.use_ada_layer_norm: self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) else: self.norm1 = nn.LayerNorm( dim, elementwise_affine=norm_elementwise_affine ) def forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, video_length=None, ): # SparseCausal-Attention # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) else: norm_hidden_states = self.norm1(hidden_states) cross_attention_kwargs = ( cross_attention_kwargs if cross_attention_kwargs is not None else {} ) if self.unet_use_cross_frame_attention: cross_attention_kwargs["video_length"] = video_length attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=( encoder_hidden_states if self.only_cross_attention else None ), attention_mask=attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # 4. Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states hidden_states = attn_output + hidden_states # 2. Cross-Attention if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states # 4. Temporal-Attention if self.unet_use_temporal_attention: d = hidden_states.shape[1] hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states