# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import torch from transformers.pytorch_utils import Conv1D from peft.import_utils import is_bnb_4bit_available, is_bnb_available from peft.tuners.lora import LoraConfig, LoraModel from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import ( TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING, _freeze_adapter, _get_submodules, get_auto_gptq_quant_linear, get_quantization_config, ) from peft.utils.integrations import gather_params_ctx from .gptq import SVDQuantLinear from .layer import AdaLoraLayer, RankAllocator, SVDLinear class AdaLoraModel(LoraModel): """ Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper: https://openreview.net/forum?id=lq62uWRJjiY Args: model ([`transformers.PreTrainedModel`]): The model to be adapted. config ([`AdaLoraConfig`]): The configuration of the AdaLora model. adapter_name (`str`): The name of the adapter, defaults to `"default"`. Returns: `torch.nn.Module`: The AdaLora model. Example:: >>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig >>> config = AdaLoraConfig( peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"], lora_dropout=0.01, ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(model, config, "default") **Attributes**: - **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted. - **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model. """ # Note: don't redefine prefix here, it should be inherited from LoraModel def __init__(self, model, config, adapter_name): super().__init__(model, config, adapter_name) traininable_mode_counter = 0 for config in self.peft_config.values(): if not config.inference_mode: traininable_mode_counter += 1 if traininable_mode_counter > 1: raise ValueError( "AdaLoraModel supports only 1 trainable adapter. " "When using multiple adapters, set inference_mode to True for all adapters except the one you want to train." ) if self.peft_config[adapter_name].inference_mode: _freeze_adapter(self.model, adapter_name) else: self.trainable_adapter_name = adapter_name self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name) def _check_new_adapter_config(self, config: LoraConfig) -> None: """ A helper method to check the config when a new adapter is being added. Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. """ super()._check_new_adapter_config(config) traininable_mode_counter = 0 for config_ in self.peft_config.values(): if not config_.inference_mode: traininable_mode_counter += 1 if traininable_mode_counter > 1: raise ValueError( f"{self.__class__.__name__} supports only 1 trainable adapter. " "When using multiple adapters, set inference_mode to True for all adapters except the one " "you want to train." ) def _create_and_replace( self, lora_config, adapter_name, target, target_name, parent, current_key, ): kwargs = { "r": lora_config.init_r, "lora_alpha": lora_config.lora_alpha, "lora_dropout": lora_config.lora_dropout, "fan_in_fan_out": lora_config.fan_in_fan_out, "init_lora_weights": lora_config.init_lora_weights, "loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False), "loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False), } if (kwargs["loaded_in_8bit"] or kwargs["loaded_in_4bit"]) and not is_bnb_available(): raise ImportError( "To use AdaLora with 8-bit quantization, please install the `bitsandbytes` package. " "You can install it with `pip install bitsandbytes`." ) quantization_config = get_quantization_config(self.model, method="gptq") if quantization_config is not None: kwargs["gptq_quantization_config"] = quantization_config # If it is not an AdaLoraLayer, create a new module, else update it with new adapters if not isinstance(target, AdaLoraLayer): new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs) if adapter_name not in self.active_adapters: # adding an additional adapter: it is not automatically trainable new_module.requires_grad_(False) self._replace_module(parent, target_name, new_module, target) else: target.update_layer( adapter_name, lora_config.init_r, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) @staticmethod def _create_new_module(lora_config, adapter_name, target, **kwargs): # avoid eager bnb import if is_bnb_available(): import bitsandbytes as bnb from .bnb import SVDLinear8bitLt if is_bnb_4bit_available(): from .bnb import SVDLinear4bit gptq_quantization_config = kwargs.get("gptq_quantization_config", None) AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config) loaded_in_8bit = kwargs.pop("loaded_in_8bit", False) loaded_in_4bit = kwargs.pop("loaded_in_4bit", False) if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt): kwargs.update( { "has_fp16_weights": target_base_layer.state.has_fp16_weights, "memory_efficient_backward": target_base_layer.state.memory_efficient_backward, "threshold": target_base_layer.state.threshold, "index": target_base_layer.index, } ) new_module = SVDLinear8bitLt(target, adapter_name, **kwargs) elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit): fourbit_kwargs = kwargs.copy() fourbit_kwargs.update( { "compute_dtype": target_base_layer.compute_dtype, "compress_statistics": target_base_layer.weight.compress_statistics, "quant_type": target_base_layer.weight.quant_type, } ) new_module = SVDLinear4bit(target, adapter_name, **fourbit_kwargs) elif AutoGPTQQuantLinear is not None and isinstance(target, AutoGPTQQuantLinear): new_module = SVDQuantLinear(target, adapter_name, **kwargs) else: if isinstance(target_base_layer, torch.nn.Linear): if kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " "Setting fan_in_fan_out to False." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False elif isinstance(target_base_layer, Conv1D): if not kwargs["fan_in_fan_out"]: warnings.warn( "fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True." ) kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True else: raise ValueError( f"Target module {target} is not supported. " f"Currently, only `torch.nn.Linear` and `Conv1D` are supported." ) new_module = SVDLinear(target, adapter_name, **kwargs) return new_module @staticmethod def _prepare_adapter_config(peft_config, model_config): if peft_config.target_modules is None: if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING: raise ValueError("Please specify `target_modules` in `peft_config`") peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[ model_config["model_type"] ] return peft_config def __getattr__(self, name: str): """Forward missing attributes to the wrapped module.""" try: return super().__getattr__(name) # defer to nn.Module's logic except AttributeError: return getattr(self.model, name) def forward(self, *args, **kwargs): outputs = self.model.forward(*args, **kwargs) if (getattr(outputs, "loss", None) is not None) and isinstance(outputs.loss, torch.Tensor): # Calculate the orthogonal regularization orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight if orth_reg_weight <= 0: raise ValueError("orth_reg_weight should be greater than 0. ") regu_loss = 0 num_param = 0 for n, p in self.model.named_parameters(): if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n: if p.shape == torch.Size([0]): with gather_params_ctx(p, fwd_module=self): para_cov = p @ p.T if "lora_A" in n else p.T @ p else: para_cov = p @ p.T if "lora_A" in n else p.T @ p I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) # noqa: E741 I.requires_grad = False num_param += 1 regu_loss += torch.norm(para_cov - I, p="fro") if num_param > 0: regu_loss = regu_loss / num_param else: regu_loss = 0 outputs.loss += orth_reg_weight * regu_loss return outputs def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name): lora_config = self.peft_config[adapter_name] for name, rank_idx in rank_pattern.items(): if isinstance(rank_idx, list): rank = sum(rank_idx) elif isinstance(rank_idx, torch.Tensor): rank_idx = rank_idx.view(-1) rank = rank_idx.sum().item() else: raise ValueError("Unexpected type of rank_idx") key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1]) _, target, _ = _get_submodules(self.model, key) lora_E_weights = target.lora_E[adapter_name][rank_idx] lora_A_weights = target.lora_A[adapter_name][rank_idx] lora_B_weights = target.lora_B[adapter_name][:, rank_idx] ranknum = target.ranknum[adapter_name] target.update_layer( adapter_name, rank, lora_config.lora_alpha, lora_config.lora_dropout, lora_config.init_lora_weights, ) with torch.no_grad(): if rank > 0: target.lora_E[adapter_name].copy_(lora_E_weights) target.lora_A[adapter_name].copy_(lora_A_weights) target.lora_B[adapter_name].copy_(lora_B_weights) # The scaling is exactly as the previous target.ranknum[adapter_name].copy_(ranknum) def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name): for name, rank_idx in rank_pattern.items(): rank = sum(rank_idx) prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1]) for layer in ["lora_E", "lora_A", "lora_B"]: key = f"base_model.model.{prefix}.{layer}.{adapter_name}" if layer != "lora_B": state_dict[key] = ( state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key] ) else: state_dict[key] = ( state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key] ) return state_dict def update_and_allocate(self, global_step): """ This method updates Adalora budget and mask. This should be called in every training step after `loss.backward()` and before `zero_grad()`. `tinit`, `tfinal` and `deltaT` are handled with in the method. Args: global_step (`int`): The current training step, it is used to calculate adalora budget. Example: ```python >>> loss = model(**input).loss >>> loss.backward() >>> optimizer.step() >>> model.base_model.update_and_allocate(i_step) >>> optimizer.zero_grad() ``` """ lora_config = self.peft_config[self.trainable_adapter_name] # Update the importance score and allocate the budget if global_step < lora_config.total_step - lora_config.tfinal: _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step) if rank_pattern: lora_config.rank_pattern = rank_pattern # Finalize the budget allocation elif global_step == lora_config.total_step - lora_config.tfinal: _, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True) # for some reason, this freezes the trainable parameters and nothing gets updates # self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name) lora_config.rank_pattern = rank_pattern self.rankallocator.reset_ipt() # Currently using inefficient way to mask the unimportant weights using the rank pattern # due to problem mentioned above elif global_step > lora_config.total_step - lora_config.tfinal: self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern) # Pass the function and do forward propagation else: return None def add_weighted_adapter(self, *args, **kwargs): """This method is not supported for AdaLoRA, use LoRA instead.""" raise TypeError(f"{self.__class__.__name__} does not support add_weighted_adapter method.")