import math from dataclasses import dataclass from typing import Callable, Optional import torch import torch.nn.functional as F from diffusers.models.attention import Attention, FeedForward from diffusers.utils import BaseOutput from diffusers.utils.torch_utils import maybe_allow_in_graph from einops import rearrange, repeat from torch import Tensor, nn def zero_module(module): # Zero out the parameters of a module and return it. for p in module.parameters(): p.detach().zero_() return module @dataclass class TemporalTransformer3DModelOutput(BaseOutput): sample: torch.FloatTensor def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): if motion_module_type == "Vanilla": return VanillaTemporalModule( in_channels=in_channels, **motion_module_kwargs, ) else: raise ValueError class VanillaTemporalModule(nn.Module): def __init__( self, in_channels, num_attention_heads=8, num_transformer_block=2, attention_block_types=("Temporal_Self", "Temporal_Self"), cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, temporal_attention_dim_div=1, zero_initialize=True, ): super().__init__() self.temporal_transformer = TemporalTransformer3DModel( in_channels=in_channels, num_attention_heads=num_attention_heads, attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, num_layers=num_transformer_block, attention_block_types=attention_block_types, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) if zero_initialize: self.temporal_transformer.proj_out = zero_module( self.temporal_transformer.proj_out ) self.skip_temporal_layers = False # Whether to skip temporal layer def forward( self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None, ): if self.skip_temporal_layers is True: return input_tensor hidden_states = input_tensor hidden_states = self.temporal_transformer( hidden_states, encoder_hidden_states, attention_mask ) output = hidden_states return output @maybe_allow_in_graph class TemporalTransformer3DModel(nn.Module): def __init__( self, in_channels, num_attention_heads, attention_head_dim, num_layers, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups=32, cross_attention_dim=768, activation_fn="geglu", attention_bias=False, upcast_attention=False, cross_frame_attention_mode=None, temporal_position_encoding=False, temporal_position_encoding_max_len=24, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim self.norm = torch.nn.GroupNorm( num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True ) self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [ TemporalTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, attention_block_types=attention_block_types, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward( self, hidden_states: Tensor, encoder_hidden_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, ): assert ( hidden_states.dim() == 5 ), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( batch, height * weight, inner_dim ) hidden_states = self.proj_in(hidden_states) # Transformer Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length, ) # output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim) .permute(0, 3, 1, 2) .contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) return output @maybe_allow_in_graph class TemporalTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, attention_block_types=( "Temporal_Self", "Temporal_Self", ), dropout=0.0, norm_num_groups: int = 32, cross_attention_dim: int = 768, activation_fn: str = "geglu", attention_bias: bool = False, upcast_attention: bool = False, cross_frame_attention_mode=None, temporal_position_encoding: bool = False, temporal_position_encoding_max_len: int = 24, ): super().__init__() attention_blocks = [] norms = [] for block_name in attention_block_types: attention_blocks.append( VersatileAttention( attention_mode=block_name.split("_")[0], cross_attention_dim=( cross_attention_dim if block_name.endswith("_Cross") else None ), query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, cross_frame_attention_mode=cross_frame_attention_mode, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, ) ) norms.append(nn.LayerNorm(dim)) self.attention_blocks = nn.ModuleList(attention_blocks) self.norms = nn.ModuleList(norms) self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.ff_norm = nn.LayerNorm(dim) def forward( self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, ): for attention_block, norm in zip(self.attention_blocks, self.norms): norm_hidden_states = norm(hidden_states) hidden_states = ( attention_block( norm_hidden_states, encoder_hidden_states=( encoder_hidden_states if attention_block.is_cross_attention else None ), video_length=video_length, ) + hidden_states ) hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states output = hidden_states return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout: float = 0.0, max_len: int = 24): super().__init__() self.dropout: nn.Module = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) ) pe: Tensor = torch.zeros(1, max_len, d_model) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x: Tensor): x = x + self.pe[:, : x.size(1)] return self.dropout(x) @maybe_allow_in_graph class VersatileAttention(Attention): def __init__( self, attention_mode: str = None, cross_frame_attention_mode: Optional[str] = None, temporal_position_encoding: bool = False, temporal_position_encoding_max_len: int = 24, *args, **kwargs, ): super().__init__(*args, **kwargs) if attention_mode.lower() != "temporal": raise ValueError(f"Attention mode {attention_mode} is not supported.") self.attention_mode = attention_mode self.is_cross_attention = kwargs["cross_attention_dim"] is not None self.pos_encoder = ( PositionalEncoding( kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len, ) if (temporal_position_encoding and attention_mode == "Temporal") else None ) def extra_repr(self): return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" def forward( self, hidden_states: Tensor, encoder_hidden_states=None, attention_mask=None, video_length=None, ): if self.attention_mode == "Temporal": d = hidden_states.shape[1] hidden_states = rearrange( hidden_states, "(b f) d c -> (b d) f c", f=video_length ) if self.pos_encoder is not None: hidden_states = self.pos_encoder(hidden_states) encoder_hidden_states = ( repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states ) else: raise NotImplementedError # attention processor makes this easy so that's nice hidden_states = self.processor( self, hidden_states, encoder_hidden_states, attention_mask ) if self.attention_mode == "Temporal": hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) return hidden_states def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None, ): return None