Yw22's picture
init demo
d711508
raw
history blame
3.47 kB
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
from dataclasses import dataclass, field
from typing import Optional, Union
from peft.config import PromptLearningConfig
from peft.utils import PeftType
class PromptTuningInit(str, enum.Enum):
TEXT = "TEXT"
RANDOM = "RANDOM"
@dataclass
class PromptTuningConfig(PromptLearningConfig):
"""
This is the configuration class to store the configuration of a [`PromptEmbedding`].
Args:
prompt_tuning_init (Union[[`PromptTuningInit`], `str`]): The initialization of the prompt embedding.
prompt_tuning_init_text (`str`, *optional*):
The text to initialize the prompt embedding. Only used if `prompt_tuning_init` is `TEXT`.
tokenizer_name_or_path (`str`, *optional*):
The name or path of the tokenizer. Only used if `prompt_tuning_init` is `TEXT`.
tokenizer_kwargs (`dict`, *optional*):
The keyword arguments to pass to `AutoTokenizer.from_pretrained`. Only used if `prompt_tuning_init` is
`TEXT`.
"""
prompt_tuning_init: Union[PromptTuningInit, str] = field(
default=PromptTuningInit.RANDOM,
metadata={"help": "How to initialize the prompt tuning parameters"},
)
prompt_tuning_init_text: Optional[str] = field(
default=None,
metadata={
"help": "The text to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`"
},
)
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The tokenizer to use for prompt tuning initialization. Only used if prompt_tuning_init is `TEXT`"
},
)
tokenizer_kwargs: Optional[dict] = field(
default=None,
metadata={
"help": (
"The keyword arguments to pass to `AutoTokenizer.from_pretrained`. Only used if prompt_tuning_init is "
"`TEXT`"
),
},
)
def __post_init__(self):
self.peft_type = PeftType.PROMPT_TUNING
if (self.prompt_tuning_init == PromptTuningInit.TEXT) and not self.tokenizer_name_or_path:
raise ValueError(
f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', "
f"tokenizer_name_or_path can't be {self.tokenizer_name_or_path}."
)
if (self.prompt_tuning_init == PromptTuningInit.TEXT) and self.prompt_tuning_init_text is None:
raise ValueError(
f"When prompt_tuning_init='{PromptTuningInit.TEXT.value}', "
f"prompt_tuning_init_text can't be {self.prompt_tuning_init_text}."
)
if self.tokenizer_kwargs and (self.prompt_tuning_init != PromptTuningInit.TEXT):
raise ValueError(
f"tokenizer_kwargs only valid when using prompt_tuning_init='{PromptTuningInit.TEXT.value}'."
)