import math import torch import torch.nn as nn import torch.nn.functional as F import nvdiffrast.torch as dr def get_ray_directions(h, w, intrinsics, norm=False, device=None): """ Args: h (int) w (int) intrinsics: (*, 4), in [fx, fy, cx, cy] Returns: directions: (*, h, w, 3), the direction of the rays in camera coordinate """ batch_size = intrinsics.shape[:-1] x = torch.linspace(0.5, w - 0.5, w, device=device) y = torch.linspace(0.5, h - 0.5, h, device=device) # (*, h, w, 2) directions_xy = torch.stack( [((x - intrinsics[..., 2:3]) / intrinsics[..., 0:1])[..., None, :].expand(*batch_size, h, w), ((y - intrinsics[..., 3:4]) / intrinsics[..., 1:2])[..., :, None].expand(*batch_size, h, w)], dim=-1) # (*, h, w, 3) directions = F.pad(directions_xy, [0, 1], mode='constant', value=1.0) if norm: directions = F.normalize(directions, dim=-1) return directions def edge_dilation(img, mask, radius=3, iter=7): """ Args: img (torch.Tensor): (n, c, h, w) mask (torch.Tensor): (n, 1, h, w) radius (float): Radius of dilation. Returns: torch.Tensor: Dilated image. """ n, c, h, w = img.size() int_radius = round(radius) kernel_size = int(int_radius * 2 + 1) distance1d_sq = torch.linspace(-int_radius, int_radius, kernel_size, dtype=img.dtype, device=img.device).square() kernel_distance = (distance1d_sq.reshape(1, -1) + distance1d_sq.reshape(-1, 1)).sqrt() kernel_neg_distance = kernel_distance.max() - kernel_distance + 1 for _ in range(iter): mask_out = F.max_pool2d(mask, kernel_size, stride=1, padding=int_radius) do_fill_mask = ((mask_out - mask) > 0.5).squeeze(1) # (num_fill, 3) in [ind_n, ind_h, ind_w] do_fill = do_fill_mask.nonzero() # unfold the image and mask mask_unfold = F.unfold(mask, kernel_size, padding=int_radius).reshape( n, kernel_size * kernel_size, h, w).permute(0, 2, 3, 1) fill_ind = (mask_unfold[do_fill_mask] * kernel_neg_distance.flatten()).argmax(dim=-1) do_fill_h = do_fill[:, 1] + fill_ind // kernel_size - int_radius do_fill_w = do_fill[:, 2] + fill_ind % kernel_size - int_radius img_out = img.clone() img_out[do_fill[:, 0], :, do_fill[:, 1], do_fill[:, 2]] = img[ do_fill[:, 0], :, do_fill_h, do_fill_w] img = img_out mask = mask_out return img def depth_to_normal(depth, directions, format='opengl'): """ Args: depth: shape (*, h, w), inverse depth defined as 1 / z directions: shape (*, h, w, 3), unnormalized ray directions, under OpenCV coordinate system Returns: out_normal: shape (*, h, w, 3), in range [0, 1] """ out_xyz = directions / depth.unsqueeze(-1).clamp(min=1e-6) dx = out_xyz[..., :, 1:, :] - out_xyz[..., :, :-1, :] dy = out_xyz[..., 1:, :, :] - out_xyz[..., :-1, :, :] right = F.pad(dx, (0, 0, 0, 1, 0, 0), mode='replicate') up = F.pad(-dy, (0, 0, 0, 0, 1, 0), mode='replicate') left = F.pad(-dx, (0, 0, 1, 0, 0, 0), mode='replicate') down = F.pad(dy, (0, 0, 0, 0, 0, 1), mode='replicate') out_normal = F.normalize( F.normalize(torch.cross(right, up, dim=-1), dim=-1) + F.normalize(torch.cross(up, left, dim=-1), dim=-1) + F.normalize(torch.cross(left, down, dim=-1), dim=-1) + F.normalize(torch.cross(down, right, dim=-1), dim=-1), dim=-1) if format == 'opengl': out_normal[..., 1:3] = -out_normal[..., 1:3] # to opengl coord elif format == 'opencv': out_normal = out_normal else: raise ValueError('format should be opengl or opencv') out_normal = out_normal / 2 + 0.5 return out_normal def make_divisible(x, m=8): return int(math.ceil(x / m) * m) def interpolate_hwc(x, scale_factor, mode='area'): batch_dim = x.shape[:-3] y = x.reshape(batch_dim.numel(), *x.shape[-3:]).permute(0, 3, 1, 2) y = F.interpolate(y, scale_factor=scale_factor, mode=mode).permute(0, 2, 3, 1) return y.reshape(*batch_dim, *y.shape[1:]) def compute_edge_to_face_mapping(attr_idx): with torch.no_grad(): # Get unique edges # Create all edges, packed by triangle all_edges = torch.cat(( torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Elliminate duplicates and return inverse mapping unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() # Compute edge to face table mask0 = order[:,0] == 0 mask1 = order[:,0] == 1 tris_per_edge[idx_map[mask0], 0] = tris[mask0] tris_per_edge[idx_map[mask1], 1] = tris[mask1] return tris_per_edge @torch.cuda.amp.autocast(enabled=False) def normal_consistency(face_normals, t_pos_idx): tris_per_edge = compute_edge_to_face_mapping(t_pos_idx) # Fetch normals for both faces sharind an edge n0 = face_normals[tris_per_edge[:, 0], :] n1 = face_normals[tris_per_edge[:, 1], :] # Compute error metric based on normal difference term = torch.clamp(torch.sum(n0 * n1, -1, keepdim=True), min=-1.0, max=1.0) term = (1.0 - term) return torch.mean(torch.abs(term)) def laplacian_uniform(verts, faces): V = verts.shape[0] F = faces.shape[0] # Neighbor indices ii = faces[:, [1, 2, 0]].flatten() jj = faces[:, [2, 0, 1]].flatten() adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique(dim=1) adj_values = torch.ones(adj.shape[1], device=verts.device, dtype=torch.float) # Diagonal indices diag_idx = adj[0] # Build the sparse matrix idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) values = torch.cat((-adj_values, adj_values)) # The coalesce operation sums the duplicate indices, resulting in the # correct diagonal return torch.sparse_coo_tensor(idx, values, (V,V)).coalesce() @torch.cuda.amp.autocast(enabled=False) def laplacian_smooth_loss(verts, faces): with torch.no_grad(): L = laplacian_uniform(verts, faces.long()) loss = L.mm(verts) loss = loss.norm(dim=1) loss = loss.mean() return loss class DMTet: def __init__(self, device): self.device = device self.triangle_table = torch.tensor([ [-1, -1, -1, -1, -1, -1], [1, 0, 2, -1, -1, -1], [4, 0, 3, -1, -1, -1], [1, 4, 2, 1, 3, 4], [3, 1, 5, -1, -1, -1], [2, 3, 0, 2, 5, 3], [1, 4, 0, 1, 5, 4], [4, 2, 5, -1, -1, -1], [4, 5, 2, -1, -1, -1], [4, 1, 0, 4, 5, 1], [3, 2, 0, 3, 5, 2], [1, 3, 5, -1, -1, -1], [4, 1, 2, 4, 3, 1], [3, 0, 4, -1, -1, -1], [2, 0, 1, -1, -1, -1], [-1, -1, -1, -1, -1, -1] ], dtype=torch.long, device=device) self.num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device) self.base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device) def sort_edges(self, edges_ex2): with torch.no_grad(): order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() order = order.unsqueeze(dim=1) a = torch.gather(input=edges_ex2, index=order, dim=1) b = torch.gather(input=edges_ex2, index=1 - order, dim=1) return torch.stack([a, b], -1) def __call__(self, pos_nx3, sdf_n, tet_fx4): # pos_nx3: [N, 3] # sdf_n: [N] # tet_fx4: [F, 4] with torch.no_grad(): occ_n = sdf_n > 0 occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) occ_sum = torch.sum(occ_fx4, -1) # [F,] valid_tets = (occ_sum > 0) & (occ_sum < 4) # occ_sum = occ_sum[valid_tets] # find all vertices all_edges = tet_fx4[valid_tets][:, self.base_tet_edges].reshape(-1, 2) all_edges = self.sort_edges(all_edges) unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) unique_edges = unique_edges.long() mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1 mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=self.device) idx_map = mapping[idx_map] # map edges to verts interp_v = unique_edges[mask_edges] edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) edges_to_interp_sdf[:, -1] *= -1 denominator = edges_to_interp_sdf.sum(1, keepdim=True) edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator verts = (edges_to_interp * edges_to_interp_sdf).sum(1) idx_map = idx_map.reshape(-1, 6) v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=self.device)) tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) num_triangles = self.num_triangles_table[tetindex] # Generate triangle indices faces = torch.cat(( torch.gather(input=idx_map[num_triangles == 1], dim=1, index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), torch.gather(input=idx_map[num_triangles == 2], dim=1, index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), ), dim=0) return verts, faces class MeshRenderer(nn.Module): def __init__(self, near=0.1, far=10, ssaa=1, texture_filter='linear-mipmap-linear', opengl=False): super().__init__() self.near = near self.far = far assert isinstance(ssaa, int) and ssaa >= 1 self.ssaa = ssaa self.texture_filter = texture_filter self.glctx = dr.RasterizeGLContext() if opengl else dr.RasterizeCudaContext() def forward(self, meshes, poses, intrinsics, h, w, shading_fun=None, dilate_edges=0, normal_bg=[0.5, 0.5, 1.0], aa=True, render_vc=False): """ Args: meshes (list[Mesh]): list of Mesh objects poses: Shape (num_scenes, num_images, 3, 4) intrinsics: Shape (num_scenes, num_images, 4) in [fx, fy, cx, cy] """ num_scenes, num_images, _, _ = poses.size() if self.ssaa > 1: h = h * self.ssaa w = w * self.ssaa intrinsics = intrinsics * self.ssaa r_mat_c2w = torch.cat( [poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1) # opencv to opengl conversion proj = poses.new_zeros([num_scenes, num_images, 4, 4]) proj[..., 0, 0] = 2 * intrinsics[..., 0] / w proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1 proj[..., 1, 1] = -2 * intrinsics[..., 1] / h proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1 proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near) proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near) proj[..., 3, 2] = -1 # (num_scenes, (num_images, num_vertices, 3)) v_cam = [(mesh.v - poses[i, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w[i] for i, mesh in enumerate(meshes)] # (num_scenes, (num_images, num_vertices, 4)) v_clip = [F.pad(v, pad=(0, 1), mode='constant', value=1.0) @ proj[i].transpose(-1, -2) for i, v in enumerate(v_cam)] if num_scenes == 1: # (num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_images, h, w, 4 or 0) rast, rast_db = dr.rasterize( self.glctx, v_clip[0], meshes[0].f, (h, w), grad_db=torch.is_grad_enabled()) fg = (rast[..., 3] > 0).unsqueeze(0) # (num_scenes, num_images, h, w) alpha = fg.float().unsqueeze(-1) depth = 1 / dr.interpolate( -v_cam[0][..., 2:3].contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w) depth.masked_fill_(~fg, 0) normal = dr.interpolate( meshes[0].vn.unsqueeze(0).contiguous(), rast, meshes[0].fn)[0].reshape(num_scenes, num_images, h, w, 3) normal = F.normalize(normal, dim=-1) # (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3) rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5 rot_normal[~fg] = rot_normal.new_tensor(normal_bg) if meshes[0].vt is not None and meshes[0].albedo is not None: # (num_images, h, w, 2) & (num_images, h, w, 4) texc, texc_db = dr.interpolate( meshes[0].vt.unsqueeze(0).contiguous(), rast, meshes[0].ft, rast_db=rast_db, diff_attrs='all') # (num_scenes, num_images, h, w, 3) albedo = dr.texture( meshes[0].albedo.unsqueeze(0)[..., :3].contiguous(), texc, uv_da=texc_db, filter_mode=self.texture_filter).unsqueeze(0) albedo[~fg] = 0 elif meshes[0].vc is not None: rgba = dr.interpolate( meshes[0].vc.contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 4) alpha = alpha * rgba[..., 3:4] albedo = rgba[..., :3] * alpha else: albedo = torch.zeros_like(rot_normal) prev_grad_enabled = torch.is_grad_enabled() torch.set_grad_enabled(True) if shading_fun is not None: xyz = dr.interpolate( meshes[0].v.unsqueeze(0).contiguous(), rast, meshes[0].f)[0].reshape(num_scenes, num_images, h, w, 3) rgb_reshade = shading_fun( world_pos=xyz[fg], albedo=albedo[fg], world_normal=normal[fg], fg_mask=fg) albedo = torch.zeros_like(albedo) albedo[fg] = rgb_reshade # (num_scenes, num_images, h, w, 4) rgba = torch.cat([albedo, alpha], dim=-1) if dilate_edges > 0: rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2) rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges) rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4) if aa: rgba, depth, rot_normal = dr.antialias( torch.cat([rgba, depth.unsqueeze(-1), rot_normal], dim=-1).squeeze(0), rast, v_clip[0], meshes[0].f).unsqueeze(0).split([4, 1, 3], dim=-1) depth = depth.squeeze(-1) else: # concat and range mode # v_cat = [] v_clip_cat = [] v_cam_cat = [] vn_cat = [] vt_cat = [] f_cat = [] fn_cat = [] ft_cat = [] v_count = 0 vn_count = 0 vt_count = 0 f_count = 0 f_ranges = [] for i, mesh in enumerate(meshes): num_v = v_clip[i].size(1) num_vn = mesh.vn.size(0) num_vt = mesh.vt.size(0) # v_cat.append(mesh.v.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_v, 3)) v_clip_cat.append(v_clip[i].reshape(num_images * num_v, 4)) v_cam_cat.append(v_cam[i].reshape(num_images * num_v, 3)) vn_cat.append(mesh.vn.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vn, 3)) vt_cat.append(mesh.vt.unsqueeze(0).expand(num_images, -1, -1).reshape(num_images * num_vt, 2)) for _ in range(num_images): f_cat.append(mesh.f + v_count) fn_cat.append(mesh.fn + vn_count) ft_cat.append(mesh.ft + vt_count) v_count += num_v vn_count += num_vn vt_count += num_vt f_ranges.append([f_count, mesh.f.size(0)]) f_count += mesh.f.size(0) # v_cat = torch.cat(v_cat, dim=0) v_clip_cat = torch.cat(v_clip_cat, dim=0) v_cam_cat = torch.cat(v_cam_cat, dim=0) vn_cat = torch.cat(vn_cat, dim=0) f_cat = torch.cat(f_cat, dim=0) f_ranges = torch.tensor(f_ranges, device=poses.device, dtype=torch.int32) # (num_scenes * num_images, h, w, 4) in [u, v, z/w, triangle_id] & (num_scenes * num_images, h, w, 4 or 0) rast, rast_db = dr.rasterize( self.glctx, v_clip_cat, f_cat, (h, w), ranges=f_ranges, grad_db=torch.is_grad_enabled()) fg = (rast[..., 3] > 0).reshape(num_scenes, num_images, h, w) depth = 1 / dr.interpolate( -v_cam_cat[..., 2:3].contiguous(), rast, f_cat)[0].reshape(num_scenes, num_images, h, w) depth.masked_fill_(~fg, 0) normal = dr.interpolate( vn_cat, rast, fn_cat)[0].reshape(num_scenes, num_images, h, w, 3) normal = F.normalize(normal, dim=-1) # (num_scenes, num_images, h, w, 3) = (num_scenes, num_images, h, w, 3) @ (num_scenes, num_images, 1, 3, 3) rot_normal = (normal @ r_mat_c2w.unsqueeze(2)) / 2 + 0.5 rot_normal[~fg] = rot_normal.new_tensor(normal_bg) # (num_scenes * num_images, h, w, 2) & (num_scenes * num_images, h, w, 4) texc, texc_db = dr.interpolate( vt_cat, rast, ft_cat, rast_db=rast_db, diff_attrs='all') albedo = dr.texture( torch.cat([mesh.albedo.unsqueeze(0)[..., :3].expand(num_images, -1, -1, -1) for mesh in meshes], dim=0), texc, uv_da=texc_db, filter_mode=self.texture_filter ).reshape(num_scenes, num_images, h, w, 3) prev_grad_enabled = torch.is_grad_enabled() torch.set_grad_enabled(True) if shading_fun is not None: raise NotImplementedError # (num_scenes, num_images, h, w, 4) rgba = torch.cat([albedo, fg.float().unsqueeze(-1)], dim=-1) if dilate_edges > 0: rgba = rgba.reshape(num_scenes * num_images, h, w, 4).permute(0, 3, 1, 2) rgba = edge_dilation(rgba, rgba[:, 3:], dilate_edges) rgba = rgba.permute(0, 2, 3, 1).reshape(num_scenes, num_images, h, w, 4) if aa: # Todo: depth/normal antialiasing rgba = dr.antialias( rgba.reshape(num_scenes * num_images, h, w, 4), rast, v_clip_cat, f_cat ).reshape(num_scenes, num_images, h, w, 4) if self.ssaa > 1: rgba = interpolate_hwc(rgba, 1 / self.ssaa) depth = interpolate_hwc(depth.unsqueeze(-1), 1 / self.ssaa).squeeze(-1) rot_normal = interpolate_hwc(rot_normal, 1 / self.ssaa) results = dict( rgba=rgba, depth=depth, normal=rot_normal) torch.set_grad_enabled(prev_grad_enabled) return results def bake_xyz_shading_fun(self, meshes, shading_fun, map_size=1024, force_auto_uv=False): assert len(meshes) == 1, 'only support one mesh' mesh = meshes[0] if mesh.vt is None or force_auto_uv: mesh.auto_uv() assert len(mesh.ft) == len(mesh.f) vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1) rast = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False)[0] valid = (rast[..., 3] > 0).reshape(map_size, map_size) xyz = dr.interpolate(mesh.v[None], rast, mesh.f)[0].reshape(map_size, map_size, 3) rgb_reshade = shading_fun(world_pos=xyz[valid]) new_albedo_map = xyz.new_zeros((map_size, map_size, 3)) new_albedo_map[valid] = rgb_reshade torch.cuda.empty_cache() new_albedo_map = edge_dilation( new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(), ).squeeze(0).permute(1, 2, 0) mesh.albedo = torch.cat( [new_albedo_map.clamp(min=0, max=1), torch.ones_like(new_albedo_map[..., :1])], dim=-1) mesh.textureless = False return [mesh] def bake_multiview(self, meshes, images, alphas, poses, intrinsics, map_size=1024, cos_weight_pow=4.0): assert len(meshes) == 1, 'only support one mesh' mesh = meshes[0] images = images[0] # (n, h, w, 3) alphas = alphas[0] # (n, h, w, 1) n, h, w, _ = images.size() r_mat_c2w = torch.cat( [poses[..., :3, :1], -poses[..., :3, 1:3]], dim=-1)[0] # opencv to opengl conversion proj = poses.new_zeros([n, 4, 4]) proj[..., 0, 0] = 2 * intrinsics[..., 0] / w proj[..., 0, 2] = -2 * intrinsics[..., 2] / w + 1 proj[..., 1, 1] = -2 * intrinsics[..., 1] / h proj[..., 1, 2] = -2 * intrinsics[..., 3] / h + 1 proj[..., 2, 2] = -(self.far + self.near) / (self.far - self.near) proj[..., 2, 3] = -(2 * self.far * self.near) / (self.far - self.near) proj[..., 3, 2] = -1 # (num_images, num_vertices, 3) v_cam = (mesh.v.detach() - poses[0, :, :3, 3].unsqueeze(-2)) @ r_mat_c2w # (num_images, num_vertices, 4) v_clip = F.pad(v_cam, pad=(0, 1), mode='constant', value=1.0) @ proj.transpose(-1, -2) rast, rast_db = dr.rasterize(self.glctx, v_clip, mesh.f, (h, w), grad_db=False) texc, texc_db = dr.interpolate( mesh.vt.unsqueeze(0).contiguous(), rast, mesh.ft, rast_db=rast_db, diff_attrs='all') with torch.enable_grad(): dummy_maps = torch.ones((n, map_size, map_size, 1), device=images.device, dtype=images.dtype).requires_grad_(True) # (num_images, h, w, 1) albedo = dr.texture( dummy_maps, texc, uv_da=texc_db, filter_mode=self.texture_filter) visibility_grad = torch.autograd.grad(albedo.sum(), dummy_maps, create_graph=False)[0] fg = rast[..., 3] > 0 # (num_images, h, w) depth = 1 / dr.interpolate( -v_cam[..., 2:3].contiguous(), rast, mesh.f)[0].reshape(n, h, w) depth.masked_fill_(~fg, 0) # # save all the depth maps for visualization debug # import matplotlib.pyplot as plt # for i in range(n): # plt.imshow(depth[i].cpu().numpy()) # plt.savefig(f'depth_{i}.png') # # also save the alphas # for i in range(n): # plt.imshow(alphas[i].cpu().numpy()) # plt.savefig(f'alpha_{i}.png') directions = get_ray_directions( h, w, intrinsics.squeeze(0), norm=True, device=intrinsics.device) normals_opencv = depth_to_normal( depth, directions, format='opencv') * 2 - 1 normals_cos_weight = (normals_opencv[..., None, :] @ directions[..., :, None]).squeeze(-1).neg().clamp(min=0) img_space_weight = (normals_cos_weight ** cos_weight_pow) * alphas img_space_weight = -F.max_pool2d( # alleviate edge effect -img_space_weight.permute(0, 3, 1, 2), 5, stride=1, padding=2).permute(0, 2, 3, 1) # bake texture vt_clip = torch.cat([mesh.vt * 2 - 1, mesh.vt.new_tensor([[0., 1.]]).expand(mesh.vt.size(0), -1)], dim=-1) rast, rast_db = dr.rasterize(self.glctx, vt_clip[None], mesh.ft, (map_size, map_size), grad_db=False) valid = (rast[..., 3] > 0).reshape(map_size, map_size) rast = rast.expand(n, -1, -1, -1) rast_db = rast_db.expand(n, -1, -1, -1) v_img = v_clip[..., :2] / v_clip[..., 3:] * 0.5 + 0.5 # print(v_img.min(), v_img.max()) texc, texc_db = dr.interpolate( v_img.contiguous(), rast.contiguous(), mesh.f, rast_db=rast_db.contiguous(), diff_attrs='all') # (n, map_size, map_size, 4) tex = dr.texture( torch.cat([images, img_space_weight], dim=-1), texc, uv_da=texc_db, filter_mode=self.texture_filter) weight = tex[..., 3:4] * visibility_grad new_albedo_map = (tex[..., :3] * weight).sum(dim=0) / weight.sum(dim=0).clamp(min=1e-6) new_albedo_map = edge_dilation( new_albedo_map.permute(2, 0, 1)[None], valid[None, None].float(), ).squeeze(0).permute(1, 2, 0) mesh.albedo = torch.cat( [new_albedo_map.clamp(min=0, max=1), torch.ones_like(new_albedo_map[..., :1])], dim=-1) mesh.textureless = False return [mesh]