import os.path from data.base_dataset import BaseDataset, get_params, get_transform from data.image_folder import make_dataset from PIL import Image, ImageEnhance import random import numpy as np import torch import torch.nn.functional as F import cv2 class SingleCoDataset(BaseDataset): @staticmethod def modify_commandline_options(parser, is_train): return parser def __init__(self, opt): self.opt = opt self.root = opt.dataroot self.dir_A = os.path.join(opt.dataroot, opt.phase, opt.folder, 'imgs') self.A_paths = make_dataset(self.dir_A) self.A_paths = sorted(self.A_paths) self.A_size = len(self.A_paths) # self.transform = get_transform(opt) def __getitem__(self, index): A_path = self.A_paths[index] A_img = Image.open(A_path).convert('RGB') # enhancer = ImageEnhance.Brightness(A_img) # A_img = enhancer.enhance(1.5) if os.path.exists(A_path.replace('imgs','line')[:-4]+'.jpg'): # L_img = Image.open(A_path.replace('imgs','line')[:-4]+'.png') L_img = cv2.imread(A_path.replace('imgs','line')[:-4]+'.jpg') kernel = np.ones((3,3), np.uint8) L_img = cv2.erode(L_img, kernel, iterations=1) L_img = Image.fromarray(L_img) else: L_img = A_img if A_img.size!=L_img.size: # L_img = L_img.resize(A_img.size, Image.ANTIALIAS) A_img = A_img.resize(L_img.size, Image.ANTIALIAS) if A_img.size[1]>2500: A_img = A_img.resize((A_img.size[0]//2, A_img.size[1]//2), Image.ANTIALIAS) ow, oh = A_img.size transform_params = get_params(self.opt, A_img.size) A_transform = get_transform(self.opt, transform_params, grayscale=False) L_transform = get_transform(self.opt, transform_params, grayscale=True) A = A_transform(A_img) L = L_transform(L_img) # base = 2**9 # h = int((oh+base-1) // base * base) # w = int((ow+base-1) // base * base) # A = F.pad(A.unsqueeze(0), (0,w-ow, 0,h-oh), 'replicate').squeeze(0) # L = F.pad(L.unsqueeze(0), (0,w-ow, 0,h-oh), 'replicate').squeeze(0) tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114 Ai = tmp.unsqueeze(0) return {'A': A, 'Ai': Ai, 'L': L, 'B': torch.zeros(1), 'Bs': torch.zeros(1), 'Bi': torch.zeros(1), 'Bl': torch.zeros(1), 'A_paths': A_path, 'h': oh, 'w': ow} def __len__(self): return self.A_size def name(self): return 'SingleCoDataset' def M_transform(feat, opt, params=None): outfeat = feat.copy() oh,ow = feat.shape[1:] x1, y1 = params['crop_pos'] tw = th = opt.crop_size if (ow > tw or oh > th): outfeat = outfeat[:,y1:y1+th,x1:x1+tw] if params['flip']: outfeat = np.flip(outfeat, 2)#outfeat[:,:,::-1] return torch.from_numpy(outfeat.copy()).float()*2-1.0