from io import BytesIO import string import gradio as gr import requests from caption_anything import CaptionAnything import torch import json import sys import argparse from caption_anything import parse_augment import os # download sam checkpoint if not downloaded def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) return filepath checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" folder = "segmenter" filename = "sam_vit_h_4b8939.pth" title = """<h1 align="center">Caption-Anything</h1>""" description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. <br> <strong>Code</strong>: GitHub repo: <a href='https://github.com/ttengwang/Caption-Anything' target='_blank'></a> """ examples = [ ["test_img/img2.jpg", "[[1000, 700, 1]]"] ] args = parse_augment() def get_prompt(chat_input, click_state): points = click_state[0] labels = click_state[1] inputs = json.loads(chat_input) for input in inputs: points.append(input[:2]) labels.append(input[2]) prompt = { "prompt_type":["click"], "input_point":points, "input_label":labels, "multimask_output":"True", } return prompt def inference_seg_cap(image_input, chat_input, language, sentiment, factuality, length, state, click_state): controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} prompt = get_prompt(chat_input, click_state) print('prompt: ', prompt, 'controls: ', controls) out = model.inference(image_input, prompt, controls) state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))] for k, v in out['generated_captions'].items(): state = state + [(f'{k}: {v}', None)] click_state[2].append(out['generated_captions']['raw_caption']) image_output_mask = out['mask_save_path'] image_output_crop = out['crop_save_path'] return state, state, click_state, image_output_mask, image_output_crop def upload_callback(image_input, state): state = state + [('Image size: ' + str(image_input.size), None)] return state # get coordinate in format [[x,y,positive/negative]] def get_select_coords(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt: gr.SelectData): print("point_prompt: ", point_prompt) if point_prompt == 'Positive Point': coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) else: coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1])) return (coordinate,) + inference_seg_cap(image_input, coordinate, language, sentiment, factuality, length, state, click_state) def chat_with_points(chat_input, click_state, state): points, labels, captions = click_state # point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\n. Now begin chatting! Human: {chat_input}\nAI: " # "The image is of width {width} and height {height}." point_chat_prompt = "a) Revised prompt: I am an AI trained to chat with you about an image based on specific points (w, h) you provide, along with their visual descriptions. Please note that (0, 0) refers to the top-left corner of the image, w refers to the width, and h refers to the height. Here are the points and their descriptions you've given me: {points_with_caps}. Now, let's chat! Human: {chat_input} AI:" prev_visual_context = "" pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1] prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n' chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input}) response = model.text_refiner.llm(chat_prompt) state = state + [(chat_input, response)] return state, state def init_openai_api_key(api_key): # os.environ['OPENAI_API_KEY'] = api_key global model model = CaptionAnything(args, api_key) css=''' #image_upload{min-height:200px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 200px} ''' with gr.Blocks(css=css) as iface: state = gr.State([]) click_state = gr.State([[],[],[]]) caption_state = gr.State([[]]) gr.Markdown(title) gr.Markdown(description) with gr.Column(): openai_api_key = gr.Textbox( placeholder="Input your openAI API key and press Enter", show_label=False, lines=1, type="password", ) openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key]) with gr.Row(): with gr.Column(scale=0.7): image_input = gr.Image(type="pil", interactive=True, label="Image", elem_id="image_upload").style(height=260,scale=1.0) with gr.Row(scale=0.7): point_prompt = gr.Radio( choices=["Positive Point", "Negative Point"], value="Positive Point", label="Points", interactive=True, ) # with gr.Row(): language = gr.Radio( choices=["English", "Chinese", "French", "Spanish", "Arabic", "Portuguese","Cantonese"], value="English", label="Language", interactive=True, ) sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=5, maximum=100, value=10, step=1, interactive=True, label="Length", ) with gr.Column(scale=1.5): with gr.Row(): image_output_mask= gr.Image(type="pil", interactive=False, label="Mask").style(height=260,scale=1.0) image_output_crop= gr.Image(type="pil", interactive=False, label="Cropped Image by Mask", show_progress=False).style(height=260,scale=1.0) chatbot = gr.Chatbot(label="Chat Output",).style(height=450,scale=0.5) with gr.Row(): with gr.Column(scale=0.7): prompt_input = gr.Textbox(lines=1, label="Input Prompt (A list of points like : [[100, 200, 1], [200,300,0]])") prompt_input.submit( inference_seg_cap, [ image_input, prompt_input, language, sentiment, factuality, length, state, click_state ], [chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) image_input.upload( upload_callback, [image_input, state], [chatbot] ) with gr.Row(): clear_button = gr.Button(value="Clear Click", interactive=True) clear_button.click( lambda: ("", [[], [], []], None, None), [], [prompt_input, click_state, image_output_mask, image_output_crop], queue=False, show_progress=False ) clear_button = gr.Button(value="Clear", interactive=True) clear_button.click( lambda: ("", [], [], [[], [], []], None, None), [], [prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], queue=False, show_progress=False ) submit_button = gr.Button( value="Submit", interactive=True, variant="primary" ) submit_button.click( inference_seg_cap, [ image_input, prompt_input, language, sentiment, factuality, length, state, click_state ], [chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) # select coordinate image_input.select( get_select_coords, inputs=[image_input,point_prompt,language,sentiment,factuality,length,state,click_state], outputs=[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) image_input.change( lambda: ("", [], [[], [], []]), [], [chatbot, state, click_state], queue=False, ) with gr.Column(scale=1.5): chat_input = gr.Textbox(lines=1, label="Chat Input") chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state]) examples = gr.Examples( examples=examples, inputs=[image_input, prompt_input], ) iface.queue(concurrency_count=1, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)