from io import BytesIO import string import gradio as gr import requests from caas import CaptionAnything import torch import json import sys import argparse from caas import parse_augment import numpy as np import PIL.ImageDraw as ImageDraw from image_editing_utils import create_bubble_frame import copy from tools import mask_painter from PIL import Image import os def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) return filepath checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" folder = "segmenter" filename = "sam_vit_h_4b8939.pth" download_checkpoint(checkpoint_url, folder, filename) title = """

Caption-Anything

""" description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: https://github.com/ttengwang/Caption-Anything """ examples = [ ["test_img/img2.jpg"], ["test_img/img5.jpg"], ["test_img/img12.jpg"], ["test_img/img14.jpg"], ] args = parse_augment() # args.device = 'cuda:5' # args.disable_gpt = False # args.enable_reduce_tokens = True # args.port=20322 model = CaptionAnything(args) def init_openai_api_key(api_key): os.environ['OPENAI_API_KEY'] = api_key model.init_refiner() def get_prompt(chat_input, click_state): points = click_state[0] labels = click_state[1] inputs = json.loads(chat_input) for input in inputs: points.append(input[:2]) labels.append(input[2]) prompt = { "prompt_type":["click"], "input_point":points, "input_label":labels, "multimask_output":"True", } return prompt def chat_with_points(chat_input, click_state, state): if not hasattr(model, "text_refiner"): response = "Text refiner is not initilzed, please input openai api key." state = state + [(chat_input, response)] return state, state points, labels, captions = click_state point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\nNow begin chatting! Human: {chat_input}\nAI: " # "The image is of width {width} and height {height}." prev_visual_context = "" pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1] if len(captions): prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n' else: prev_visual_context = 'no point exists.' chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input}) response = model.text_refiner.llm(chat_prompt) state = state + [(chat_input, response)] return state, state def inference_seg_cap(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt:gr.SelectData): if point_prompt == 'Positive': coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) else: coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1])) controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} # click_coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) # chat_input = click_coordinate prompt = get_prompt(coordinate, click_state) print('prompt: ', prompt, 'controls: ', controls) out = model.inference(image_input, prompt, controls) state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))] for k, v in out['generated_captions'].items(): state = state + [(f'{k}: {v}', None)] click_state[2].append(out['generated_captions']['raw_caption']) text = out['generated_captions']['raw_caption'] # draw = ImageDraw.Draw(image_input) # draw.text((evt.index[0], evt.index[1]), text, textcolor=(0,0,255), text_size=120) input_mask = np.array(Image.open(out['mask_save_path']).convert('P')) image_input = mask_painter(np.array(image_input), input_mask) origin_image_input = image_input image_input = create_bubble_frame(image_input, text, (evt.index[0], evt.index[1])) yield state, state, click_state, chat_input, image_input if not args.disable_gpt and hasattr(model, "text_refiner"): refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions']) new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption'] refined_image_input = create_bubble_frame(origin_image_input, new_cap, (evt.index[0], evt.index[1])) yield state, state, click_state, chat_input, refined_image_input def upload_callback(image_input, state): state = [] + [('Image size: ' + str(image_input.size), None)] click_state = [[], [], []] model.segmenter.image = None model.segmenter.image_embedding = None model.segmenter.set_image(image_input) return state, image_input, click_state with gr.Blocks( css=''' #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 600px} ''' ) as iface: state = gr.State([]) click_state = gr.State([[],[],[]]) origin_image = gr.State(None) gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=1.0): image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload") with gr.Row(scale=1.0): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True) clear_button_clike = gr.Button(value="Clear Clicks", interactive=True) clear_button_image = gr.Button(value="Clear Image", interactive=True) with gr.Row(scale=1.0): language = gr.Dropdown(['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True) sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) with gr.Row(scale=1.0): factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=10, maximum=80, value=10, step=1, interactive=True, label="Length", ) with gr.Column(scale=0.5): openai_api_key = gr.Textbox( placeholder="Input your openAI API key and press Enter", show_label=True, label = "OpenAI API Key", lines=1, type="password" ) openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key]) chatbot = gr.Chatbot(label="Chat about Selected Object",).style(height=620,scale=0.5) chat_input = gr.Textbox(lines=1, label="Chat Input") with gr.Row(): clear_button_text = gr.Button(value="Clear Text", interactive=True) submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary") clear_button_clike.click( lambda x: ([[], [], []], x), [origin_image], [click_state, image_input], queue=False, show_progress=False ) clear_button_image.click( lambda: (None, [], [], [[], [], []]), [], [image_input, chatbot, state, click_state], queue=False, show_progress=False ) clear_button_text.click( lambda: ([], [], [[], [], []]), [], [chatbot, state, click_state], queue=False, show_progress=False ) image_input.clear( lambda: (None, [], [], [[], [], []]), [], [image_input, chatbot, state, click_state], queue=False, show_progress=False ) examples = gr.Examples( examples=examples, inputs=[image_input], ) image_input.upload(upload_callback,[image_input, state], [state, origin_image, click_state]) chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state]) # select coordinate image_input.select(inference_seg_cap, inputs=[ origin_image, point_prompt, language, sentiment, factuality, length, state, click_state ], outputs=[chatbot, state, click_state, chat_input, image_input], show_progress=False, queue=True) iface.queue(concurrency_count=1, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)