import os import json import PIL import gradio as gr import numpy as np from gradio import processing_utils from packaging import version from PIL import Image, ImageDraw from caption_anything.model import CaptionAnything from caption_anything.utils.image_editing_utils import create_bubble_frame from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter from caption_anything.utils.parser import parse_augment from caption_anything.captioner import build_captioner from caption_anything.text_refiner import build_text_refiner from caption_anything.segmenter import build_segmenter from caption_anything.utils.chatbot import ConversationBot, build_chatbot_tools, get_new_image_name from segment_anything import sam_model_registry args = parse_augment() if args.segmenter_checkpoint is None: _, segmenter_checkpoint = prepare_segmenter(args.segmenter) else: segmenter_checkpoint = args.segmenter_checkpoint shared_captioner = build_captioner(args.captioner, args.device, args) shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device) tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')} shared_chatbot_tools = build_chatbot_tools(tools_dict) class ImageSketcher(gr.Image): """ Fix the bug of gradio.Image that cannot upload with tool == 'sketch'. """ is_template = True # Magic to make this work with gradio.Block, don't remove unless you know what you're doing. def __init__(self, **kwargs): super().__init__(tool="sketch", **kwargs) def preprocess(self, x): if self.tool == 'sketch' and self.source in ["upload", "webcam"]: assert isinstance(x, dict) if x['mask'] is None: decode_image = processing_utils.decode_base64_to_image(x['image']) width, height = decode_image.size mask = np.zeros((height, width, 4), dtype=np.uint8) mask[..., -1] = 255 mask = self.postprocess(mask) x['mask'] = mask return super().preprocess(x) def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, text_refiner=None, session_id=None): segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model) captioner = captioner if session_id is not None: print('Init caption anything for session {}'.format(session_id)) return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, text_refiner=text_refiner) def init_openai_api_key(api_key=""): text_refiner = None visual_chatgpt = None if api_key and len(api_key) > 30: try: text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key) text_refiner.llm('hi') # test visual_chatgpt = ConversationBot(shared_chatbot_tools, api_key) except: text_refiner = None visual_chatgpt = None openai_available = text_refiner is not None return gr.update(visible=openai_available), gr.update(visible=openai_available), gr.update( visible=openai_available), gr.update(visible=True), gr.update(visible=True), gr.update( visible=True), text_refiner, visual_chatgpt def get_click_prompt(chat_input, click_state, click_mode): inputs = json.loads(chat_input) if click_mode == 'Continuous': points = click_state[0] labels = click_state[1] for input in inputs: points.append(input[:2]) labels.append(input[2]) elif click_mode == 'Single': points = [] labels = [] for input in inputs: points.append(input[:2]) labels.append(input[2]) click_state[0] = points click_state[1] = labels else: raise NotImplementedError prompt = { "prompt_type": ["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "True", } return prompt def update_click_state(click_state, caption, click_mode): if click_mode == 'Continuous': click_state[2].append(caption) elif click_mode == 'Single': click_state[2] = [caption] else: raise NotImplementedError def chat_input_callback(*args): visual_chatgpt, chat_input, click_state, state, aux_state = args if visual_chatgpt is not None: return visual_chatgpt.run_text(chat_input, state, aux_state) else: response = "Text refiner is not initilzed, please input openai api key." state = state + [(chat_input, response)] return state, state def upload_callback(image_input, state, visual_chatgpt=None): if isinstance(image_input, dict): # if upload from sketcher_input, input contains image and mask image_input, mask = image_input['image'], image_input['mask'] click_state = [[], [], []] res = 1024 width, height = image_input.size ratio = min(1.0 * res / max(width, height), 1.0) if ratio < 1.0: image_input = image_input.resize((int(width * ratio), int(height * ratio))) print('Scaling input image to {}'.format(image_input.size)) model = build_caption_anything_with_models( args, api_key="", captioner=shared_captioner, sam_model=shared_sam_model, session_id=iface.app_id ) model.segmenter.set_image(image_input) image_embedding = model.image_embedding original_size = model.original_size input_size = model.input_size if visual_chatgpt is not None: new_image_path = get_new_image_name('chat_image', func_name='upload') image_input.save(new_image_path) visual_chatgpt.current_image = new_image_path img_caption, _ = model.captioner.inference_seg(image_input) Human_prompt = f'\nHuman: provide a new figure with path {new_image_path}. The description is: {img_caption}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n' AI_prompt = "Received." visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt state = [(None, 'Received new image, resize it to width {} and height {}: '.format(image_input.size[0], image_input.size[1]))] return state, state, image_input, click_state, image_input, image_input, image_embedding, \ original_size, input_size def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt, evt: gr.SelectData): click_index = evt.index if point_prompt == 'Positive': coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1])) else: coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1])) prompt = get_click_prompt(coordinate, click_state, click_mode) input_points = prompt['input_point'] input_labels = prompt['input_label'] controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} model = build_caption_anything_with_models( args, api_key="", captioner=shared_captioner, sam_model=shared_sam_model, text_refiner=text_refiner, session_id=iface.app_id ) model.setup(image_embedding, original_size, input_size, is_image_set=True) enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki) state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)] state = state + [(None, "raw_caption: {}".format(out['generated_captions']['raw_caption']))] wiki = out['generated_captions'].get('wiki', "") update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode) text = out['generated_captions']['raw_caption'] input_mask = np.array(out['mask'].convert('P')) image_input = mask_painter(np.array(image_input), input_mask) origin_image_input = image_input image_input = create_bubble_frame(image_input, text, (click_index[0], click_index[1]), input_mask, input_points=input_points, input_labels=input_labels) x, y = input_points[-1] if visual_chatgpt is not None: new_crop_save_path = get_new_image_name('chat_image', func_name='crop') Image.open(out["crop_save_path"]).save(new_crop_save_path) point_prompt = f'You should primarly use tools on the selected regional image (description: {text}, path: {new_crop_save_path}), which is a part of the whole image (path: {visual_chatgpt.current_image}). If human mentioned some objects not in the selected region, you can use tools on the whole image.' visual_chatgpt.point_prompt = point_prompt yield state, state, click_state, image_input, wiki if not args.disable_gpt and model.text_refiner: refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], enable_wiki=enable_wiki) # new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption'] new_cap = refined_caption['caption'] wiki = refined_caption['wiki'] state = state + [(None, f"caption: {new_cap}")] refined_image_input = create_bubble_frame(origin_image_input, new_cap, (click_index[0], click_index[1]), input_mask, input_points=input_points, input_labels=input_labels) yield state, state, click_state, refined_image_input, wiki def get_sketch_prompt(mask: PIL.Image.Image): """ Get the prompt for the sketcher. TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster. """ mask = np.asarray(mask)[..., 0] # Get the bounding box of the sketch y, x = np.where(mask != 0) x1, y1 = np.min(x), np.min(y) x2, y2 = np.max(x), np.max(y) prompt = { 'prompt_type': ['box'], 'input_boxes': [ [x1, y1, x2, y2] ] } return prompt def inference_traject(sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state, original_size, input_size, text_refiner): image_input, mask = sketcher_image['image'], sketcher_image['mask'] prompt = get_sketch_prompt(mask) boxes = prompt['input_boxes'] controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} model = build_caption_anything_with_models( args, api_key="", captioner=shared_captioner, sam_model=shared_sam_model, text_refiner=text_refiner, session_id=iface.app_id ) model.setup(image_embedding, original_size, input_size, is_image_set=True) enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki) # Update components and states state.append((f'Box: {boxes}', None)) state.append((None, f'raw_caption: {out["generated_captions"]["raw_caption"]}')) wiki = out['generated_captions'].get('wiki', "") text = out['generated_captions']['raw_caption'] input_mask = np.array(out['mask'].convert('P')) image_input = mask_painter(np.array(image_input), input_mask) origin_image_input = image_input fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2)) image_input = create_bubble_frame(image_input, text, fake_click_index, input_mask) yield state, state, image_input, wiki if not args.disable_gpt and model.text_refiner: refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], enable_wiki=enable_wiki) new_cap = refined_caption['caption'] wiki = refined_caption['wiki'] state = state + [(None, f"caption: {new_cap}")] refined_image_input = create_bubble_frame(origin_image_input, new_cap, fake_click_index, input_mask) yield state, state, refined_image_input, wiki def clear_chat_memory(visual_chatgpt): if visual_chatgpt is not None: visual_chatgpt.memory.clear() visual_chatgpt.current_image = None visual_chatgpt.point_prompt = "" def get_style(): current_version = version.parse(gr.__version__) if current_version <= version.parse('3.24.1'): style = ''' #image_sketcher{min-height:500px} #image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px} #image_upload{min-height:500px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px} ''' elif current_version <= version.parse('3.27'): style = ''' #image_sketcher{min-height:500px} #image_upload{min-height:500px} ''' else: style = None return style def create_ui(): title = """
Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: https://github.com/ttengwang/Caption-Anything
""" examples = [ ["test_images/img35.webp"], ["test_images/img2.jpg"], ["test_images/img5.jpg"], ["test_images/img12.jpg"], ["test_images/img14.jpg"], ["test_images/qingming3.jpeg"], ["test_images/img1.jpg"], ] with gr.Blocks( css=get_style() ) as iface: state = gr.State([]) click_state = gr.State([[], [], []]) # chat_state = gr.State([]) origin_image = gr.State(None) image_embedding = gr.State(None) text_refiner = gr.State(None) visual_chatgpt = gr.State(None) original_size = gr.State(None) input_size = gr.State(None) # img_caption = gr.State(None) aux_state = gr.State([]) gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=1.0): with gr.Column(visible=False) as modules_not_need_gpt: with gr.Tab("Click"): image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload") example_image = gr.Image(type="pil", interactive=False, visible=False) with gr.Row(scale=1.0): with gr.Row(scale=0.4): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True) click_mode = gr.Radio( choices=["Continuous", "Single"], value="Continuous", label="Clicking Mode", interactive=True) with gr.Row(scale=0.4): clear_button_click = gr.Button(value="Clear Clicks", interactive=True) clear_button_image = gr.Button(value="Clear Image", interactive=True) with gr.Tab("Trajectory (beta)"): sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=20, elem_id="image_sketcher") with gr.Row(): submit_button_sketcher = gr.Button(value="Submit", interactive=True) with gr.Column(visible=False) as modules_need_gpt: with gr.Row(scale=1.0): language = gr.Dropdown( ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True) sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) with gr.Row(scale=1.0): factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=10, maximum=80, value=10, step=1, interactive=True, label="Generated Caption Length", ) enable_wiki = gr.Radio( choices=["Yes", "No"], value="No", label="Enable Wiki", interactive=True) with gr.Column(visible=True) as modules_not_need_gpt3: gr.Examples( examples=examples, inputs=[example_image], ) with gr.Column(scale=0.5): openai_api_key = gr.Textbox( placeholder="Input openAI API key", show_label=False, label="OpenAI API Key", lines=1, type="password") with gr.Row(scale=0.5): enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary') disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True, variant='primary') with gr.Column(visible=False) as modules_need_gpt2: wiki_output = gr.Textbox(lines=5, label="Wiki", max_lines=5) with gr.Column(visible=False) as modules_not_need_gpt2: chatbot = gr.Chatbot(label="Chat about Selected Object", ).style(height=550, scale=0.5) with gr.Column(visible=False) as modules_need_gpt3: chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style( container=False) with gr.Row(): clear_button_text = gr.Button(value="Clear Text", interactive=True) submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary") openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt]) enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt]) disable_chatGPT_button.click(init_openai_api_key, outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt]) clear_button_click.click( lambda x: ([[], [], []], x, ""), [origin_image], [click_state, image_input, wiki_output], queue=False, show_progress=False ) clear_button_image.click( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, wiki_output, origin_image], queue=False, show_progress=False ) clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt]) clear_button_text.click( lambda: ([], [], [[], [], [], []]), [], [chatbot, state, click_state], queue=False, show_progress=False ) clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt]) image_input.clear( lambda: (None, [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, click_state, wiki_output, origin_image], queue=False, show_progress=False ) image_input.clear(clear_chat_memory, inputs=[visual_chatgpt]) image_input.upload(upload_callback, [image_input, state, visual_chatgpt], [chatbot, state, origin_image, click_state, image_input, sketcher_input, image_embedding, original_size, input_size]) sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt], [chatbot, state, origin_image, click_state, image_input, sketcher_input, image_embedding, original_size, input_size]) chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state], [chatbot, state, aux_state]) chat_input.submit(lambda: "", None, chat_input) submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state], [chatbot, state, aux_state]) submit_button_text.click(lambda: "", None, chat_input) example_image.change(upload_callback, [example_image, state, visual_chatgpt], [chatbot, state, origin_image, click_state, image_input, sketcher_input, image_embedding, original_size, input_size]) example_image.change(clear_chat_memory, inputs=[visual_chatgpt]) # select coordinate image_input.select( inference_click, inputs=[ origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt ], outputs=[chatbot, state, click_state, image_input, wiki_output], show_progress=False, queue=True ) submit_button_sketcher.click( inference_traject, inputs=[ sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state, original_size, input_size, text_refiner ], outputs=[chatbot, state, sketcher_input, wiki_output], show_progress=False, queue=True ) return iface if __name__ == '__main__': iface = create_ui() iface.queue(concurrency_count=5, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)