##!/usr/bin/python3 # -*- coding: utf-8 -*- import gradio as gr import os import cv2 from PIL import Image import numpy as np from segment_anything import SamPredictor, sam_model_registry import torch from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler import random import spaces mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth') mobile_sam.eval() mobile_predictor = SamPredictor(mobile_sam) colors = [(255, 0, 0), (0, 255, 0)] markers = [1, 5] # - - - - - examples - - - - - # image_examples = [ ["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, []], ] # choose the base model here base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE" # base_model_path = "runwayml/stable-diffusion-v1-5" # input brushnet ckpt path brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt" # input source image / mask image path and the text prompt image_path="examples/brushnet/src/test_image.jpg" mask_path="examples/brushnet/src/test_mask.jpg" caption="A cake on the table." # conditioning scale paintingnet_conditioning_scale=1.0 brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16) pipe = StableDiffusionBrushNetPipeline.from_pretrained( base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False ) # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # remove following line if xformers is not installed or when using Torch 2.0. # pipe.enable_xformers_memory_efficient_attention() # memory optimization. pipe.enable_model_cpu_offload() def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img @spaces.GPU def process(input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blended, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps): if original_image is None: raise gr.Error('Please upload the input image') if (original_mask is None or len(selected_points)==0) and input_mask is None: raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image") # load example image if isinstance(original_image, int): image_name = image_examples[original_image][0] original_image = cv2.imread(image_name) original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) if input_mask is not None: H,W=original_image.shape[:2] original_mask = cv2.resize(input_mask, (W, H)) else: original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8) if invert_mask: original_mask=255-original_mask mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis] masked_image = original_image * (1-mask) init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB") mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB") generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed) image = pipe( [prompt]*2, init_image, mask_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, brushnet_conditioning_scale=float(control_strength), negative_prompt=[negative_prompt]*2, ).images if blended: if control_strength<1.0: raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed') blended_image=[] # blur, you can adjust the parameters for better performance mask = cv2.GaussianBlur(mask*255, (21, 21), 0)/255 mask = mask[:,:,np.newaxis] for image_i in image: image_np=np.array(image_i) image_pasted=original_image * (1-mask) + image_np*mask image_pasted=image_pasted.astype(image_np.dtype) blended_image.append(Image.fromarray(image_pasted)) image=blended_image return image block = gr.Blocks( theme=gr.themes.Soft( radius_size=gr.themes.sizes.radius_none, text_size=gr.themes.sizes.text_md ) ).queue() with block: with gr.Row(): with gr.Column(): gr.HTML(f"""

BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion

Project Page

""") with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"): with gr.Row(equal_height=True): gr.Markdown(""" - ⭐️ step1: Upload or select one image from Example - ⭐️ step2: Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change. - ⭐️ step3: Input prompt for generating new contents - ⭐️ step4: Click Run button """) with gr.Row(): with gr.Column(): with gr.Column(elem_id="Input"): with gr.Row(): with gr.Tabs(elem_classes=["feedback"]): with gr.TabItem("Input Image"): input_image = gr.Image(type="numpy", label="input",scale=2, height=640) original_image = gr.State(value=None,label="index") original_mask = gr.State(value=None) selected_points = gr.State([],label="select points") with gr.Row(elem_id="Seg"): radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2) undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1) prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1) negative_prompt = gr.Text( label="Negative Prompt", max_lines=5, placeholder="Please input your negative prompt", value='ugly, low quality',lines=1 ) with gr.Group(): with gr.Row(): blending = gr.Checkbox(label="Blurred Blending", value=False) invert_mask = gr.Checkbox(label="Invert Mask", value=True) run_button = gr.Button("Run",elem_id="btn") with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"): control_strength = gr.Slider( label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01 ) with gr.Group(): seed = gr.Slider( label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204 ) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) with gr.Group(): with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1, maximum=12, step=0.1, value=12, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=50, ) with gr.Row(elem_id="Image"): with gr.Tabs(elem_classes=["feedback1"]): with gr.TabItem("User-specified Mask Image (Optional)"): input_mask = gr.Image(type="numpy", label="Mask Image", height=640) with gr.Column(): with gr.Tabs(elem_classes=["feedback"]): with gr.TabItem("Outputs"): result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True) with gr.Row(): def process_example(input_image, prompt, input_mask, original_image, selected_points): # return input_image, prompt, input_mask, original_image, [] example = gr.Examples( label="Input Example", examples=image_examples, inputs=[input_image, prompt, input_mask, original_image, selected_points], outputs=[input_image, prompt, input_mask, original_image, selected_points], fn=process_example, run_on_click=True, examples_per_page=10 ) # once user upload an image, the original image is stored in `original_image` def store_img(img): # image upload is too slow if min(img.shape[0], img.shape[1]) > 512: img = resize_image(img, 512) if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0: raise gr.Error('image aspect ratio cannot be larger than 2.0') return img, img, [], None # when new image is uploaded, `selected_points` should be empty input_image.upload( store_img, [input_image], [input_image, original_image, selected_points] ) # user click the image to get points, and show the points on the image def segmentation(img, sel_pix): # online show seg mask points = [] labels = [] for p, l in sel_pix: points.append(p) labels.append(l) mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img)) with torch.no_grad(): masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False) output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255 for i in range(3): output_mask[masks[0] == True, i] = 0.0 mask_all = np.ones((masks.shape[1], masks.shape[2], 3)) color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): mask_all[masks[0] == True, i] = color_mask[i] masked_img = img / 255 * 0.3 + mask_all * 0.7 masked_img = masked_img*255 ## draw points for point, label in sel_pix: cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5) return masked_img, output_mask def get_point(img, sel_pix, point_type, evt: gr.SelectData): if point_type == 'foreground': sel_pix.append((evt.index, 1)) # append the foreground_point elif point_type == 'background': sel_pix.append((evt.index, 0)) # append the background_point else: sel_pix.append((evt.index, 1)) # default foreground_point if isinstance(img, int): image_name = image_examples[img][0] img = cv2.imread(image_name) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # online show seg mask masked_img, output_mask = segmentation(img, sel_pix) return masked_img.astype(np.uint8), output_mask input_image.select( get_point, [original_image, selected_points, radio], [input_image, original_mask], ) # undo the selected point def undo_points(orig_img, sel_pix): # draw points output_mask = None if len(sel_pix) != 0: if isinstance(orig_img, int): # if orig_img is int, the image if select from examples temp = cv2.imread(image_examples[orig_img][0]) temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB) else: temp = orig_img.copy() sel_pix.pop() # online show seg mask if len(sel_pix) !=0: temp, output_mask = segmentation(temp, sel_pix) return temp.astype(np.uint8), output_mask else: gr.Error("Nothing to Undo") undo_button.click( undo_points, [original_image, selected_points], [input_image, original_mask] ) ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps] run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) block.launch()