from sentence_transformers import SentenceTransformer import faiss import numpy as np from typing import List, Dict, Any import torch import gc import os import psutil import json class FAQEmbedder: def __init__(self, model_name: str = "all-MiniLM-L6-v2"): """ Initialize the FAQ embedder with a sentence transformer model """ self.device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Embedding model using device: {self.device}") self.model = SentenceTransformer(model_name, device=self.device) self.index = None self.faqs = None self.embeddings = None def create_embeddings(self, faqs: List[Dict[str, Any]], batch_size: int = None) -> None: """ Create embeddings for all FAQs and build FAISS index """ self.faqs = faqs available_memory = psutil.virtual_memory().available / (1024 ** 3) # GB batch_size = batch_size or min(64, int(available_memory * 4)) print(f"Creating embeddings for {len(faqs)} FAQs in batches of {batch_size}...") questions = [faq['question'] for faq in faqs] all_embeddings = [] for i in range(0, len(questions), batch_size): batch = questions[i:i+batch_size] print(f"Processing batch {i//batch_size + 1}/{(len(questions) + batch_size - 1)//batch_size}") batch_embeddings = self.model.encode(batch, show_progress_bar=False, convert_to_numpy=True) all_embeddings.append(batch_embeddings) self.embeddings = np.vstack(all_embeddings).astype('float32') all_embeddings = None gc.collect() dimension = self.embeddings.shape[1] self.index = faiss.IndexFlatL2(dimension) self.index.add(self.embeddings) print(f"Created embeddings of shape {self.embeddings.shape}") print(f"FAISS index contains {self.index.ntotal} vectors") def retrieve_relevant_faqs(self, query: str, k: int = 3) -> List[Dict[str, Any]]: """ Retrieve top-k relevant FAQs for a given query """ if self.index is None or self.faqs is None or self.embeddings is None: raise ValueError("Embeddings not created yet. Call create_embeddings first.") query_embedding = self.model.encode([query], convert_to_numpy=True).astype('float32') distances, indices = self.index.search(query_embedding, k) relevant_faqs = [] for i, idx in enumerate(indices[0]): if idx < len(self.faqs): faq = self.faqs[idx].copy() similarity = 1.0 / (1.0 + distances[0][i]) faq['similarity'] = similarity relevant_faqs.append(faq) return relevant_faqs def save(self, path: str): """ Save embeddings and FAQs to disk """ os.makedirs(path, exist_ok=True) self.model.save(path) faiss.write_index(self.index, f"{path}/index.bin") with open(f"{path}/faqs.json", "w") as f: json.dump(self.faqs, f) def load(self, path: str): """ Load embeddings and FAQs from disk """ self.model = SentenceTransformer(path) self.index = faiss.read_index(f"{path}/index.bin") with open(f"{path}/faqs.json", "r") as f: self.faqs = json.load(f) self.embeddings = np.array([self.model.encode(faq["question"]) for faq in self.faqs]).astype('float32')