from transformers import AutoModelForCausalLM, AutoTokenizer from tokenization_yi import YiTokenizer import torch # Load the model and tokenizer model_name = "01-ai/Yi-34B-200K" model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) tokenizer_dir = "Tonic1/YiTonic" vocab_file = os.path.join(tokenizer_dir, "tokenizer.model") tokenizer_json = os.path.join(tokenizer_dir, "tokenizer.json") tokenizer_config = os.path.join(tokenizer_dir, "tokenizer_config.json") tokenizer = YiTokenizer(vocab_file=vocab_file) def run(message, chat_history, system_prompt, max_new_tokens=1024, temperature=0.3, top_p=0.9, top_k=50): prompt = get_prompt(message, chat_history, system_prompt) # Encode the prompt to tensor input_ids = tokenizer.encode(prompt, return_tensors='pt') # Generate a response using the model with adjusted parameters response_ids = model.generate( input_ids, max_length=max_new_tokens + input_ids.shape[1], temperature=temperature, # Controls randomness. Lower values make text more deterministic. top_p=top_p, # Nucleus sampling: higher values allow more diversity. top_k=top_k, # Top-k sampling: limits the number of top tokens considered. pad_token_id=tokenizer.eos_token_id ) # Decode the response response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) return response def get_prompt(message, chat_history, system_prompt): texts = [f"[INST] <>\n{system_prompt}\n<>\n\n"] do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True texts.append(f"{user_input} [/INST] {response.strip()} [INST] ") message = message.strip() if do_strip else message texts.append(f"{message} [/INST]") return ''.join(texts) DEFAULT_SYSTEM_PROMPT = """ You are Yi. You are an AI assistant, you are moderately-polite and give only true information. You carefully provide accurate, factual, thoughtful, nuanced answers, and are brilliant at reasoning. If you think there might not be a correct answer, you say so. Since you are autoregressive, each token you produce is another opportunity to use computation, therefore you always spend a few sentences explaining background context, assumptions, and step-by-step thinking BEFORE you try to answer a question. """ MAX_MAX_NEW_TOKENS = 200000 DEFAULT_MAX_NEW_TOKENS = 100000 MAX_INPUT_TOKEN_LENGTH = 100000 DESCRIPTION = "# [Yi-6B](https://huggingface.co/01-ai/Yi-6B)" def clear_and_save_textbox(message): return '', message def display_input(message, history=[]): history.append((message, '')) return history def delete_prev_fn(history=[]): try: message, _ = history.pop() except IndexError: message = '' return history, message or '' def generate(message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k): if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError history = history_with_input[:-1] generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k) try: first_response = next(generator) yield history + [(message, first_response)] except StopIteration: yield history + [(message, '')] for response in generator: yield history + [(message, response)] def process_example(message): generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50) for x in generator: pass return '', x def check_input_token_length(message, chat_history, system_prompt): input_token_length = len(message) + len(chat_history) if input_token_length > MAX_INPUT_TOKEN_LENGTH: raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.") with gr.Blocks(theme='ParityError/Anime') as demo: gr.Markdown(DESCRIPTION) with gr.Group(): chatbot = gr.Chatbot(label='Yi-6B') with gr.Row(): textbox = gr.Textbox( container=False, show_label=False, placeholder='Hi, Yi', scale=10 ) submit_button = gr.Button('Submit', variant='primary', scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('Retry', variant='secondary') undo_button = gr.Button('Undo', variant='secondary') clear_button = gr.Button('Clear', variant='secondary') saved_input = gr.State() with gr.Accordion(label='Advanced options', open=False): system_prompt = gr.Textbox(label='System prompt', value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False) max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1) top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=10) textbox.submit( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) button_event_preprocess = submit_button.click( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=textbox, api_name=False, queue=False, ) clear_button.click( fn=lambda: ([], ''), outputs=[chatbot, saved_input], queue=False, api_name=False, ) demo.queue(max_size=32).launch(show_api=False)