# DreamBooth training example [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. The `train_dreambooth.py` script shows how to implement the training procedure and adapt it for stable diffusion. ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` ### Dog toy example Now let's get our dataset. Download images from [here](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ) and save them in a directory. This will be our training data. And launch the training using **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=400 ``` ### Training with prior-preservation loss Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. The `num_class_images` flag sets the number of images to generate with the class prompt. You can place existing images in `class_data_dir`, and the training script will generate any additional images so that `num_class_images` are present in `class_data_dir` during training time. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training on a 16GB GPU: With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU. To install `bitandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=2 --gradient_checkpointing \ --use_8bit_adam \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training on a 12GB GPU: It is possible to run dreambooth on a 12GB GPU by using the following optimizations: - [gradient checkpointing and the 8-bit optimizer](#training-on-a-16gb-gpu) - [xformers](#training-with-xformers) - [setting grads to none](#set-grads-to-none) ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 --gradient_checkpointing \ --use_8bit_adam \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none \ --learning_rate=2e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training on a 8 GB GPU: By using [DeepSpeed](https://www.deepspeed.ai/) it's possible to offload some tensors from VRAM to either CPU or NVME allowing to train with less VRAM. DeepSpeed needs to be enabled with `accelerate config`. During configuration answer yes to "Do you want to use DeepSpeed?". With DeepSpeed stage 2, fp16 mixed precision and offloading both parameters and optimizer state to cpu it's possible to train on under 8 GB VRAM with a drawback of requiring significantly more RAM (about 25 GB). See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options. Changing the default Adam optimizer to DeepSpeed's special version of Adam `deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but enabling it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer does not seem to be compatible with DeepSpeed at the moment. ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch --mixed_precision="fp16" train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --sample_batch_size=1 \ --gradient_accumulation_steps=1 --gradient_checkpointing \ --learning_rate=5e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Fine-tune text encoder with the UNet. The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces. Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`. ___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___ ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_text_encoder \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --use_8bit_adam \ --gradient_checkpointing \ --learning_rate=2e-6 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Using DreamBooth for pipelines other than Stable Diffusion The [AltDiffusion pipeline](https://huggingface.co/docs/diffusers/api/pipelines/alt_diffusion) also supports dreambooth fine-tuning. The process is the same as above, all you need to do is replace the `MODEL_NAME` like this: ``` export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion-m9" or export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion" ``` ### Inference Once you have trained a model using the above command, you can run inference simply using the `StableDiffusionPipeline`. Make sure to include the `identifier` (e.g. sks in above example) in your prompt. ```python from diffusers import StableDiffusionPipeline import torch model_id = "path-to-your-trained-model" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") prompt = "A photo of sks dog in a bucket" image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png") ``` ### Inference from a training checkpoint You can also perform inference from one of the checkpoints saved during the training process, if you used the `--checkpointing_steps` argument. Please, refer to [the documentation](https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint) to see how to do it. ## Training with Low-Rank Adaptation of Large Language Models (LoRA) Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen* In a nutshell, LoRA allows to adapt pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that the model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114) - Rank-decomposition matrices have significantly fewer parameters than the original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted towards new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. ### Training Let's get started with a simple example. We will re-use the dog example of the [previous section](#dog-toy-example). First, you need to set-up your dreambooth training example as is explained in the [installation section](#Installing-the-dependencies). Next, let's download the dog dataset. Download images from [here](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ) and save them in a directory. Make sure to set `INSTANCE_DIR` to the name of your directory further below. This will be our training data. Now, you can launch the training. Here we will use [Stable Diffusion 1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [wandb](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training and pass `--report_to="wandb"` to automatically log images.___** ```bash export MODEL_NAME="runwayml/stable-diffusion-v1-5" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag. ```bash huggingface-cli login ``` Now we can start training! ```bash accelerate launch train_dreambooth_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --checkpointing_steps=100 \ --learning_rate=1e-4 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=500 \ --validation_prompt="A photo of sks dog in a bucket" \ --validation_epochs=50 \ --seed="0" \ --push_to_hub ``` **___Note: When using LoRA we can use a much higher learning rate compared to vanilla dreambooth. Here we use *1e-4* instead of the usual *2e-6*.___** The final LoRA embedding weights have been uploaded to [patrickvonplaten/lora_dreambooth_dog_example](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example). **___Note: [The final weights](https://huggingface.co/patrickvonplaten/lora/blob/main/pytorch_attn_procs.bin) are only 3 MB in size which is orders of magnitudes smaller than the original model.** The training results are summarized [here](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5). You can use the `Step` slider to see how the model learned the features of our subject while the model trained. ### Inference After training, LoRA weights can be loaded very easily into the original pipeline. First, you need to load the original pipeline: ```python from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler import torch pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") ``` Next, we can load the adapter layers into the UNet with the [`load_attn_procs` function](https://huggingface.co/docs/diffusers/api/loaders#diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs). ```python pipe.unet.load_attn_procs("patrickvonplaten/lora_dreambooth_dog_example") ``` Finally, we can run the model in inference. ```python image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0] ``` ## Training with Flax/JAX For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script. ____Note: The flax example don't yet support features like gradient checkpoint, gradient accumulation etc, so to use flax for faster training we will need >30GB cards.___ Before running the scripts, make sure to install the library's training dependencies: ```bash pip install -U -r requirements_flax.txt ``` ### Training without prior preservation loss ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export INSTANCE_DIR="path-to-instance-images" export OUTPUT_DIR="path-to-save-model" python train_dreambooth_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --output_dir=$OUTPUT_DIR \ --instance_prompt="a photo of sks dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=5e-6 \ --max_train_steps=400 ``` ### Training with prior preservation loss ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" python train_dreambooth_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=5e-6 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Fine-tune text encoder with the UNet. ```bash export MODEL_NAME="duongna/stable-diffusion-v1-4-flax" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" python train_dreambooth_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_text_encoder \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=2e-6 \ --num_class_images=200 \ --max_train_steps=800 ``` ### Training with xformers: You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. This is not available with the Flax/JAX implementation. You can also use Dreambooth to train the specialized in-painting model. See [the script in the research folder for details](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/dreambooth_inpaint). ### Set grads to none To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument. More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html ### Experimental results You can refer to [this blog post](https://huggingface.co/blog/dreambooth) that discusses some of DreamBooth experiments in detail. Specifically, it recommends a set of DreamBooth-specific tips and tricks that we have found to work well for a variety of subjects.