Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,17 @@ from transformers import pipeline
|
|
6 |
import plotly.express as px
|
7 |
from datetime import datetime, timedelta
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Sentiment Analysis Model
|
10 |
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
|
11 |
|
@@ -52,31 +63,24 @@ def analyze_sentiment(text):
|
|
52 |
result = sentiment_model(text)[0]
|
53 |
return result['label'], result['score']
|
54 |
|
55 |
-
# Function to fetch stock data
|
56 |
-
def fetch_stock_data(
|
57 |
url = "https://alpha-vantage.p.rapidapi.com/query"
|
58 |
-
querystring = {"function":
|
59 |
headers = {
|
60 |
"x-rapidapi-key": "e078dae417mshb13ddc2d8149768p1608e9jsn888ce49e8554",
|
61 |
"x-rapidapi-host": "alpha-vantage.p.rapidapi.com"
|
62 |
}
|
63 |
-
|
64 |
-
|
65 |
-
response = requests.get(url, headers=headers, params=querystring)
|
66 |
-
response.raise_for_status()
|
67 |
-
data = response.json()
|
68 |
-
except requests.RequestException as e:
|
69 |
-
print(f"Error fetching stock data: {e}")
|
70 |
-
return None
|
71 |
|
72 |
if "Time Series (Daily)" not in data:
|
73 |
-
return
|
74 |
|
75 |
-
stock_data = data["Time Series (Daily)"]
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
return df
|
80 |
|
81 |
# Main function to process news and perform analysis
|
82 |
def news_and_analysis(query):
|
@@ -100,18 +104,14 @@ def news_and_analysis(query):
|
|
100 |
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
|
101 |
)
|
102 |
|
103 |
-
# Check if
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
x=stock_df.index,
|
110 |
-
y='4. close',
|
111 |
-
title=f'{query} Stock Price Over Time',
|
112 |
-
labels={'index': 'Date', '4. close': 'Closing Price'}
|
113 |
-
)
|
114 |
return news_df, sentiment_fig, stock_fig
|
|
|
115 |
return news_df, sentiment_fig, None
|
116 |
|
117 |
# Gradio interface
|
@@ -133,7 +133,7 @@ with gr.Blocks() as demo:
|
|
133 |
with gr.Column():
|
134 |
news_output = gr.DataFrame(label="News and Sentiment Analysis")
|
135 |
sentiment_plot = gr.Plot(label="Sentiment Analysis")
|
136 |
-
stock_plot = gr.Plot(label="Stock Price
|
137 |
|
138 |
analyze_btn.click(
|
139 |
news_and_analysis,
|
|
|
6 |
import plotly.express as px
|
7 |
from datetime import datetime, timedelta
|
8 |
|
9 |
+
# Load the Excel file with company names and symbols
|
10 |
+
file_path = '/Top 2000 Valued Companies with Ticker Symbols.xlsx'
|
11 |
+
companies_df = pd.read_excel(file_path)
|
12 |
+
|
13 |
+
# Function to get stock symbol for a company name
|
14 |
+
def get_stock_symbol(company_name):
|
15 |
+
match = companies_df[companies_df['Name'].str.contains(company_name, case=False, na=False)]
|
16 |
+
if not match.empty:
|
17 |
+
return match.iloc[0]['Symbol']
|
18 |
+
return None
|
19 |
+
|
20 |
# Sentiment Analysis Model
|
21 |
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
|
22 |
|
|
|
63 |
result = sentiment_model(text)[0]
|
64 |
return result['label'], result['score']
|
65 |
|
66 |
+
# Function to fetch stock data
|
67 |
+
def fetch_stock_data(symbol):
|
68 |
url = "https://alpha-vantage.p.rapidapi.com/query"
|
69 |
+
querystring = {"function":"TIME_SERIES_DAILY", "symbol":symbol, "outputsize":"compact", "datatype":"json"}
|
70 |
headers = {
|
71 |
"x-rapidapi-key": "e078dae417mshb13ddc2d8149768p1608e9jsn888ce49e8554",
|
72 |
"x-rapidapi-host": "alpha-vantage.p.rapidapi.com"
|
73 |
}
|
74 |
+
response = requests.get(url, headers=headers, params=querystring)
|
75 |
+
data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
if "Time Series (Daily)" not in data:
|
78 |
+
return pd.DataFrame()
|
79 |
|
80 |
+
stock_data = pd.DataFrame(data["Time Series (Daily)"]).T
|
81 |
+
stock_data.index = pd.to_datetime(stock_data.index)
|
82 |
+
stock_data.columns = ["Open", "High", "Low", "Close", "Volume"]
|
83 |
+
return stock_data
|
|
|
84 |
|
85 |
# Main function to process news and perform analysis
|
86 |
def news_and_analysis(query):
|
|
|
104 |
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
|
105 |
)
|
106 |
|
107 |
+
# Check if query is a company name and fetch stock data
|
108 |
+
stock_symbol = get_stock_symbol(query)
|
109 |
+
if stock_symbol:
|
110 |
+
stock_data = fetch_stock_data(stock_symbol)
|
111 |
+
if not stock_data.empty:
|
112 |
+
stock_fig = px.line(stock_data, x=stock_data.index, y='Close', title=f'{stock_symbol} Stock Price')
|
|
|
|
|
|
|
|
|
|
|
113 |
return news_df, sentiment_fig, stock_fig
|
114 |
+
|
115 |
return news_df, sentiment_fig, None
|
116 |
|
117 |
# Gradio interface
|
|
|
133 |
with gr.Column():
|
134 |
news_output = gr.DataFrame(label="News and Sentiment Analysis")
|
135 |
sentiment_plot = gr.Plot(label="Sentiment Analysis")
|
136 |
+
stock_plot = gr.Plot(label="Stock Price Movement")
|
137 |
|
138 |
analyze_btn.click(
|
139 |
news_and_analysis,
|