"""FastAPI endpoint To run locally use 'uvicorn app:app --host localhost --port 7860' """ import ast import scripts.quiz.generators as generators import scripts.quiz.hints as hints import scripts.quiz.questions as questions import scripts.quiz.utils as utils import sentry_sdk from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from mathtext.sentiment import sentiment from mathtext.text2int import text2int from pydantic import BaseModel from mathtext_fastapi.logging import prepare_message_data_for_logging from mathtext_fastapi.conversation_manager import manage_conversation_response from mathtext_fastapi.nlu import evaluate_message_with_nlu from mathtext_fastapi.nlu import run_intent_classification sentry_sdk.init( dsn="https://143c9ac3f429452eb036deda0e4d5aef@o1297809.ingest.sentry.io/4504896688881664", # Set traces_sample_rate to 1.0 to capture 100% # of transactions for performance monitoring. # We recommend adjusting this value in production, traces_sample_rate=0.20, ) app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") class Text(BaseModel): content: str = "" @app.get("/") def home(request: Request): return templates.TemplateResponse("home.html", {"request": request}) @app.get("/sentry-debug") async def trigger_error(): division_by_zero = 1 / 0 @app.post("/hello") def hello(content: Text = None): content = {"message": f"Hello {content.content}!"} return JSONResponse(content=content) @app.post("/sentiment-analysis") def sentiment_analysis_ep(content: Text = None): ml_response = sentiment(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/text2int") def text2int_ep(content: Text = None): ml_response = text2int(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversation_response(data_dict) return JSONResponse(context) @app.post("/intent-classification") def intent_classification_ep(content: Text = None): ml_response = run_intent_classification(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/nlu") async def evaluate_user_message_with_nlu_api(request: Request): """ Calls nlu evaluation and returns the nlu_response Input - request.body: json - message data for the most recent user response Output - int_data_dict or sent_data_dict: dict - the type of NLU run and result {'type':'integer', 'data': '8', 'confidence': 0} {'type':'sentiment', 'data': 'negative', 'confidence': 0.99} """ data_dict = await request.json() message_data = data_dict.get('message_data', '') nlu_response = evaluate_message_with_nlu(message_data) return JSONResponse(content=nlu_response) @app.post("/question") async def ask_math_question(request: Request): """Generate a question and return it as response along with question data Input request.body: json - amount of correct and incorrect answers in the account { 'number_correct': 0, 'number_incorrect': 0, 'level': 'easy' } Output context: dict - the information for the current state { 'text': 'What is 1+2?', 'question_numbers': [1,2,3], #3 numbers - current number, ordinal number, times 'right_answer': 3, 'number_correct': 0, 'number_incorrect': 0, 'hints_used': 0 } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) right_answers = message_data['number_correct'] wrong_answers = message_data['number_incorrect'] level = message_data['level'] return JSONResponse(generators.start_interactive_math(right_answers, wrong_answers, level)) @app.post("/hint") async def get_hint(request: Request): """Generate a hint and return it as response along with hint data Input request.body: { 'question_numbers': [1,2,3], #3 numbers - current number, ordinal number, times 'right_answer': 3, 'number_correct': 0, 'number_incorrect': 0, 'level': 'easy', 'hints_used': 0 } Output context: dict - the information for the current state { 'text': 'What is 1+2?', 'question_numbers': [1,2,3], #2 or 3 numbers 'right_answer': 3, 'number_correct': 0, 'number_incorrect': 0, 'level': 'easy', 'hints_used': 0 } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) question_numbers = message_data['question_numbers'] right_answer = message_data['right_answer'] number_correct = message_data['number_correct'] number_incorrect = message_data['number_incorrect'] level = message_data['level'] hints_used = message_data['hints_used'] return JSONResponse(hints.generate_hint(question_numbers, right_answer, number_correct, number_incorrect, level, hints_used)) @app.post("/generate_question") async def generate_question(request: Request): """Generate a bare question and return it as response Input request.body: json - level { 'level': 'easy' } Output context: dict - the information for the current state { "question": "Let's count up by 2s. What number is next if we start from 10? 6 8 10 ..." } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) level = message_data['level'] return JSONResponse(questions.generate_question_data(level)['question']) @app.post("/numbers_by_level") async def get_numbers_by_level(request: Request): """Generate three numbers and return them as response Input request.body: json - level { 'level': 'easy' } Output context: dict - three generated numbers for specified level { "current_number": 10, "ordinal_number": 2, "times": 1 } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) level = message_data['level'] return JSONResponse(questions.generate_numbers_by_level(level)) @app.post("/number_sequence") async def get_number_sequence(request: Request): """Generate a number sequence Input request.body: json - level { "current_number": 10, "ordinal_number": 2, "times": 1 } Output one of following strings with (numbers differ): ... 1 2 3 1 2 3 ... """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) cur_num = message_data['current_number'] ord_num = message_data['ordinal_number'] times = message_data['times'] return JSONResponse(questions.generate_number_sequence(cur_num, ord_num, times)) @app.post("/level") async def get_next_level(request: Request): """Depending on current level and desire to level up/down return next level Input request.body: json - level { "current_level": "easy", "level_up": True } Output Literal - "easy", "medium" or "hard" """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) cur_level = message_data['current_level'] level_up = message_data['level_up'] return JSONResponse(utils.get_next_level(cur_level, level_up))