from typing import List, Dict, Union, Optional from groq import Groq import chromadb import os import datetime import json import xml.etree.ElementTree as ET import nltk from nltk.tokenize import sent_tokenize import PyPDF2 from sentence_transformers import SentenceTransformer class CustomEmbeddingFunction: def __init__(self): self.model = SentenceTransformer('all-MiniLM-L6-v2') def __call__(self, input: List[str]) -> List[List[float]]: embeddings = self.model.encode(input) return embeddings.tolist() class EnhancedXMLProcessor: def __init__(self): self.processed_nodes = set() self.reference_map = {} self.node_info = {} def build_reference_map(self, root) -> None: """Build a map of all node references for faster lookup""" for element in root.findall('.//*'): node_id = element.get('NodeId') if node_id: self.node_info[node_id] = { 'tag': element.tag, 'browse_name': element.get('BrowseName', ''), 'display_name': self._get_display_name(element), 'description': self._get_description(element), 'data_type': element.get('DataType', ''), 'references': [] } refs = element.find('References') if refs is not None: for ref in refs.findall('Reference'): ref_type = ref.get('ReferenceType') is_forward = ref.get('IsForward', 'true') == 'true' target = ref.text if ref_type in ['HasComponent', 'HasProperty', 'HasTypeDefinition']: self.reference_map.setdefault(node_id, []).append({ 'type': ref_type, 'target': target, 'is_forward': is_forward }) self.node_info[node_id]['references'].append({ 'type': ref_type, 'target': target, 'is_forward': is_forward }) def _get_display_name(self, element) -> str: """Extract display name from element""" display_name = element.find('DisplayName') if display_name is not None: return display_name.text return '' def _get_description(self, element) -> str: """Extract description from element""" desc = element.find('Description') if desc is not None: return desc.text return '' def generate_natural_language(self, node_id: str, depth: int = 0, visited: set = None) -> List[str]: """Generate natural language description for a node and its children""" if visited is None: visited = set() if node_id in visited: return [] visited.add(node_id) descriptions = [] node = self.node_info.get(node_id) if not node: return [] base_desc = self._build_base_description(node, depth) if base_desc: descriptions.append(base_desc) if node_id in self.reference_map: child_descriptions = self._process_forward_references(node_id, depth + 1, visited) descriptions.extend(child_descriptions) return descriptions def _build_base_description(self, node: Dict, depth: int) -> str: """Build the base description for a node""" indentation = " " * depth desc_parts = [] if node['browse_name']: browse_name = node['browse_name'].split(':')[-1] desc_parts.append(f"a {browse_name}") if node['display_name']: desc_parts.append(f"(displayed as '{node['display_name']}')") if node['data_type']: desc_parts.append(f"of type {node['data_type']}") if node['description']: desc_parts.append(f"which {node['description']}") if desc_parts: return f"{indentation}Contains {' '.join(desc_parts)}" return "" def _process_forward_references(self, node_id: str, depth: int, visited: set) -> List[str]: """Process forward references to build hierarchical descriptions""" descriptions = [] for ref in self.reference_map.get(node_id, []): if ref['is_forward'] and ref['type'] in ['HasComponent', 'HasProperty']: target_descriptions = self.generate_natural_language(ref['target'], depth, visited) descriptions.extend(target_descriptions) return descriptions def generate_complete_description(self, root) -> str: """Generate a complete natural language description of the XML structure""" self.build_reference_map(root) root_descriptions = [] for node_id in self.node_info: is_root = True for ref_list in self.reference_map.values(): for ref in ref_list: if not ref['is_forward'] and ref['type'] == 'HasComponent' and ref['target'] == node_id: is_root = False break if not is_root: break if is_root: descriptions = self.generate_natural_language(node_id) root_descriptions.extend(descriptions) return "\n".join(root_descriptions) class UnifiedDocumentProcessor: def __init__(self, groq_api_key, collection_name="unified_content"): """Initialize the processor with necessary clients""" self.groq_client = Groq(api_key=groq_api_key) # XML-specific settings self.max_elements_per_chunk = 50 self.xml_processor = EnhancedXMLProcessor() # PDF-specific settings self.pdf_chunk_size = 500 self.pdf_overlap = 50 # Initialize NLTK self._initialize_nltk() # Initialize ChromaDB with a single collection for all document types self.chroma_client = chromadb.Client() existing_collections = self.chroma_client.list_collections() collection_exists = any(col.name == collection_name for col in existing_collections) if collection_exists: print(f"Using existing collection: {collection_name}") self.collection = self.chroma_client.get_collection( name=collection_name, embedding_function=CustomEmbeddingFunction() ) else: print(f"Creating new collection: {collection_name}") self.collection = self.chroma_client.create_collection( name=collection_name, embedding_function=CustomEmbeddingFunction() ) def _initialize_nltk(self): """Ensure NLTK's `punkt` tokenizer resource is available.""" try: nltk.data.find('tokenizers/punkt') except LookupError: print("Downloading NLTK 'punkt' tokenizer...") nltk.download('punkt') def flatten_xml_to_text(self, element, depth=0) -> str: """Convert XML to natural language using the enhanced processor""" try: return self.xml_processor.generate_complete_description(element) except Exception as e: print(f"Error in enhanced XML processing: {str(e)}") return self._original_flatten_xml_to_text(element, depth) def _original_flatten_xml_to_text(self, element, depth=0) -> str: """Original fallback XML flattening implementation""" text_parts = [] element_info = f"Element: {element.tag}" if element.attrib: element_info += f", Attributes: {json.dumps(element.attrib)}" if element.text and element.text.strip(): element_info += f", Text: {element.text.strip()}" text_parts.append(element_info) for child in element: child_text = self._original_flatten_xml_to_text(child, depth + 1) text_parts.append(child_text) return "\n".join(text_parts) def extract_text_from_pdf(self, pdf_path: str) -> str: """Extract text from PDF file""" try: text = "" with open(pdf_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) for page in pdf_reader.pages: text += page.extract_text() + " " return text.strip() except Exception as e: raise Exception(f"Error extracting text from PDF: {str(e)}") def chunk_text(self, text: str) -> List[str]: """Split text into chunks while preserving sentence boundaries""" sentences = sent_tokenize(text) chunks = [] current_chunk = [] current_size = 0 for sentence in sentences: words = sentence.split() sentence_size = len(words) if current_size + sentence_size > self.pdf_chunk_size: if current_chunk: chunks.append(' '.join(current_chunk)) overlap_words = current_chunk[-self.pdf_overlap:] if self.pdf_overlap > 0 else [] current_chunk = overlap_words + words current_size = len(current_chunk) else: current_chunk = words current_size = sentence_size else: current_chunk.extend(words) current_size += sentence_size if current_chunk: chunks.append(' '.join(current_chunk)) return chunks def chunk_xml_text(self, text: str, max_chunk_size: int = 2000) -> List[str]: """Split flattened XML text into manageable chunks""" lines = text.split('\n') chunks = [] current_chunk = [] current_size = 0 for line in lines: line_size = len(line) if current_size + line_size > max_chunk_size and current_chunk: chunks.append('\n'.join(current_chunk)) current_chunk = [] current_size = 0 current_chunk.append(line) current_size += line_size if current_chunk: chunks.append('\n'.join(current_chunk)) return chunks def generate_natural_language(self, content: Union[List[Dict], str], content_type: str) -> str: """Generate natural language description with improved error handling and chunking""" try: if content_type == "xml": prompt = f"Convert this XML structure description to a natural language summary that preserves the hierarchical relationships: {content}" else: # pdf prompt = f"Summarize this text while preserving key information: {content}" max_prompt_length = 4000 if len(prompt) > max_prompt_length: prompt = prompt[:max_prompt_length] + "..." response = self.groq_client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama3-8b-8192", max_tokens=1000 ) return response.choices[0].message.content except Exception as e: print(f"Error generating natural language: {str(e)}") if len(content) > 2000: half_length = len(content) // 2 first_half = content[:half_length] try: return self.generate_natural_language(first_half, content_type) except: return None return None def store_in_vector_db(self, natural_language: str, metadata: Dict) -> str: """Store content in vector database""" doc_id = f"{metadata['source_file']}_{metadata['content_type']}_{metadata['chunk_id']}_{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}" self.collection.add( documents=[natural_language], metadatas=[metadata], ids=[doc_id] ) return doc_id def process_file(self, file_path: str) -> Dict: """Process any supported file type""" try: file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.xml': return self.process_xml_file(file_path) elif file_extension == '.pdf': return self.process_pdf_file(file_path) else: return { 'success': False, 'error': f'Unsupported file type: {file_extension}' } except Exception as e: return { 'success': False, 'error': f'Error processing file: {str(e)}' } def process_xml_file(self, xml_file_path: str) -> Dict: """Process XML file with improved chunking""" try: tree = ET.parse(xml_file_path) root = tree.getroot() flattened_text = self.flatten_xml_to_text(root) chunks = self.chunk_xml_text(flattened_text) print(f"Split XML into {len(chunks)} chunks") results = [] for i, chunk in enumerate(chunks): print(f"Processing XML chunk {i+1}/{len(chunks)}") try: natural_language = self.generate_natural_language(chunk, "xml") if natural_language: metadata = { 'source_file': os.path.basename(xml_file_path), 'content_type': 'xml', 'chunk_id': i, 'total_chunks': len(chunks), 'timestamp': str(datetime.datetime.now()) } doc_id = self.store_in_vector_db(natural_language, metadata) results.append({ 'chunk': i, 'success': True, 'doc_id': doc_id, 'natural_language': natural_language }) else: results.append({ 'chunk': i, 'success': False, 'error': 'Failed to generate natural language' }) except Exception as e: print(f"Error processing chunk {i}: {str(e)}") results.append({ 'chunk': i, 'success': False, 'error': str(e) }) return { 'success': True, 'total_chunks': len(chunks), 'results': results } except Exception as e: return { 'success': False, 'error': str(e) } def process_pdf_file(self, pdf_file_path: str) -> Dict: """Process PDF file""" try: full_text = self.extract_text_from_pdf(pdf_file_path) chunks = self.chunk_text(full_text) print(f"Split PDF into {len(chunks)} chunks") results = [] for i, chunk in enumerate(chunks): print(f"Processing PDF chunk {i+1}/{len(chunks)}") natural_language = self.generate_natural_language(chunk, "pdf") if natural_language: metadata = { 'source_file': os.path.basename(pdf_file_path), 'content_type': 'pdf', 'chunk_id': i, 'total_chunks': len(chunks), 'timestamp': str(datetime.datetime.now()), 'chunk_size': len(chunk.split()) } doc_id = self.store_in_vector_db(natural_language, metadata) results.append({ 'chunk': i, 'success': True, 'doc_id': doc_id, 'natural_language': natural_language, 'original_text': chunk[:200] + "..." }) else: results.append({ 'chunk': i, 'success': False, 'error': 'Failed to generate natural language summary' }) return { 'success': True, 'total_chunks': len(chunks), 'results': results } except Exception as e: return { 'success': False, 'error': str(e) } def get_available_files(self) -> Dict[str, List[str]]: """Get list of all files in the database""" try: all_entries = self.collection.get( include=['metadatas'] ) files = { 'pdf': set(), 'xml': set() } for metadata in all_entries['metadatas']: file_type = metadata['content_type'] file_name = metadata['source_file'] files[file_type].add(file_name) return { 'pdf': sorted(list(files['pdf'])), 'xml': sorted(list(files['xml'])) } except Exception as e: print(f"Error getting available files: {str(e)}") return {'pdf': [], 'xml': []} def ask_question_selective(self, question: str, selected_files: List[str], n_results: int = 5) -> str: """Ask a question using only the selected files""" try: filter_dict = { 'source_file': {'$in': selected_files} } results = self.collection.query( query_texts=[question], n_results=n_results, where=filter_dict, include=["documents", "metadatas"] ) if not results['documents'][0]: return "No relevant content found in the selected files." context = "\n\n".join(results['documents'][0]) prompt = f"""Based on the following content from the selected files, please answer this question: {question} Content: {context} Please provide a direct answer based only on the information provided above.""" response = self.groq_client.chat.completions.create( messages=[{"role": "user", "content": prompt}], model="llama3-8b-8192", temperature=0.2 ) return response.choices[0].message.content except Exception as e: return f"Error processing your question: {str(e)}"