File size: 4,101 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Commands
## Inference
You can modify corresponding config files to change the inference settings. See more details [here](/docs/structure.md#inference-config-demos).
### Inference with DiT pretrained on ImageNet
The following command automatically downloads the pretrained weights on ImageNet and runs inference.
```bash
python scripts/inference.py configs/dit/inference/1x256x256-class.py --ckpt-path DiT-XL-2-256x256.pt
```
### Inference with Latte pretrained on UCF101
The following command automatically downloads the pretrained weights on UCF101 and runs inference.
```bash
python scripts/inference.py configs/latte/inference/16x256x256-class.py --ckpt-path Latte-XL-2-256x256-ucf101.pt
```
### Inference with PixArt-α pretrained weights
Download T5 into `./pretrained_models` and run the following command.
```bash
# 256x256
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x256x256.py --ckpt-path PixArt-XL-2-256x256.pth
# 512x512
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x512x512.py --ckpt-path PixArt-XL-2-512x512.pth
# 1024 multi-scale
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/pixart/inference/1x1024MS.py --ckpt-path PixArt-XL-2-1024MS.pth
```
### Inference with checkpoints saved during training
During training, an experiment logging folder is created in `outputs` directory. Under each checpoint folder, e.g. `epoch12-global_step2000`, there is a `ema.pt` and the shared `model` folder. Run the following command to perform inference.
```bash
# inference with ema model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000/ema.pt
# inference with model
torchrun --standalone --nproc_per_node 1 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000
# inference with sequence parallelism
# sequence parallelism is enabled automatically when nproc_per_node is larger than 1
torchrun --standalone --nproc_per_node 2 scripts/inference.py configs/opensora/inference/16x256x256.py --ckpt-path outputs/001-STDiT-XL-2/epoch12-global_step2000
```
The second command will automatically generate a `model_ckpt.pt` file in the checkpoint folder.
### Inference Hyperparameters
1. DPM-solver is good at fast inference for images. However, the video result is not satisfactory. You can use it for fast demo purpose.
```python
type="dmp-solver"
num_sampling_steps=20
```
1. You can use [SVD](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt)'s finetuned VAE decoder on videos for inference (consumes more memory). However, we do not see significant improvement in the video result. To use it, download [the pretrained weights](https://huggingface.co/maxin-cn/Latte/tree/main/t2v_required_models/vae_temporal_decoder) into `./pretrained_models/vae_temporal_decoder` and modify the config file as follows.
```python
vae = dict(
type="VideoAutoencoderKLTemporalDecoder",
from_pretrained="pretrained_models/vae_temporal_decoder",
)
## Training
To resume training, run the following command. ``--load`` different from ``--ckpt-path`` as it loads the optimizer and dataloader states.
```bash
torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --load YOUR_PRETRAINED_CKPT
```
To enable wandb logging, add `--wandb` to the command.
```bash
WANDB_API_KEY=YOUR_WANDB_API_KEY torchrun --nnodes=1 --nproc_per_node=8 scripts/train.py configs/opensora/train/64x512x512.py --data-path YOUR_CSV_PATH --wandb True
```
You can modify corresponding config files to change the training settings. See more details [here](/docs/structure.md#training-config-demos).
### Training Hyperparameters
1. `dtype` is the data type for training. Only `fp16` and `bf16` are supported. ColossalAI automatically enables the mixed precision training for `fp16` and `bf16`. During training, we find `bf16` more stable.
|