import streamlit as st import pandas as pd import os from datetime import datetime st.set_page_config(page_title="BhashaKatha", layout="centered") st.title("📚 BhashaKatha – Folk Tale & Proverb Collector") st.write("Contribute a local proverb, folk tale, or historical memory in your native language.") # Create or load the CSV file DATA_FILE = "submissions.csv" if os.path.exists(DATA_FILE): data = pd.read_csv(DATA_FILE) else: data = pd.DataFrame(columns=["Timestamp", "Name", "Region", "Language", "Category", "Submission"]) # Form fields with st.form("submission_form"): name = st.text_input("Your Name (Optional)", "") region = st.text_input("Region (Optional)", "") language = st.selectbox("Language", ["Hindi", "Tamil", "Telugu", "Kannada", "Odia", "Marathi", "Gujarati", "Punjabi", "Other"]) category = st.selectbox("Category", ["Proverb", "Folk Tale", "Historical Memory"]) submission = st.text_area("Enter your story or proverb here", height=200) submitted = st.form_submit_button("Submit") if submitted and submission.strip(): new_data = { "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "Name": name.strip(), "Region": region.strip(), "Language": language, "Category": category, "Submission": submission.strip() } data = pd.concat([data, pd.DataFrame([new_data])], ignore_index=True) data.to_csv(DATA_FILE, index=False) st.success("✅ Thank you! Your contribution has been recorded.") st.markdown("---") st.subheader("📊 Corpus Contribution Stats") st.write(f"Total Submissions Collected: **{len(data)}**")