Mantis / models /mllava /utils.py
DongfuJiang's picture
update
f748941
raw
history blame
8.32 kB
import PIL
import torch
from .modeling_llava import LlavaForConditionalGeneration
from .processing_llava import MLlavaProcessor
# from ..conversation import conv_mllava_v1_mmtag as default_conv
from ..conversation import conv_mllava_v1 as default_conv, conv_templates
from typing import List, Tuple, Union, Tuple
def chat_mllava(
text:str,
images: List[Union[PIL.Image.Image, str]],
model:LlavaForConditionalGeneration,
processor:MLlavaProcessor,
max_input_length:int=None,
history:List[dict]=None,
**kwargs) -> Tuple[str, List[dict]]:
"""
Chat with the Mllava model
Args:
text: str, the text to be sent to the model, where <image> will be the placeholder for the image
images: List[PIL.Image.Image], the images to be sent to the model, or None
model: LlavaForConditionalGeneration, the model to be used
processor: MLlavaProcessor, the processor to be used
max_input_length: int, the maximum input length
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
kwargs: dict, the generation kwargs
Returns:
Tuple[str, List[dict]], the generated text and the history of the conversation
"""
if "llama-3" in model.language_model.name_or_path.lower():
conv = conv_templates['llama_3']
terminators = [
processor.tokenizer.eos_token_id,
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
else:
conv = default_conv
terminators = None
kwargs["eos_token_id"] = terminators
conv = conv.copy()
conv.messages = []
if history is not None:
for message in history:
assert message["role"] in conv.roles
conv.append_message(message["role"], message["text"])
if text:
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], "")
history.append({"role": conv.roles[0], "text": text})
history.append({"role": conv.roles[1], "text": ""})
else:
if conv.messages[-1][0] == conv.roles[1]:
assert conv.messages[-1][1] == "", "No user message should be provided"
else:
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
conv.append_message(conv.roles[0], "")
history.append({"role": conv.roles[0], "text": ""})
else:
history = []
history.append({"role": conv.roles[0], "text": text})
history.append({"role": conv.roles[1], "text": ""})
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], "")
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
prompt = conv.get_prompt()
if images:
for i in range(len(images)):
if isinstance(images[i], str):
images[i] = PIL.Image.open(images[i]).convert("RGB")
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
for k, v in inputs.items():
if v is not None:
if isinstance(v, torch.Tensor):
inputs[k] = v.to(model.device)
elif isinstance(v, list):
inputs[k] = [x.to(model.device) for x in v]
else:
raise ValueError(f"Invalid input type: {type(v)}")
output_ids = model.generate(**inputs, **kwargs)
output_ids = output_ids[0]
# remove the input tokens
generated_ids = output_ids[inputs["input_ids"].shape[-1]:]
generated_text = processor.decode(generated_ids, skip_special_tokens=True)
history[-1]["text"] = generated_text
return generated_text, history
def chat_mllava_stream(
text:str,
images: List[Union[PIL.Image.Image, str]],
model:LlavaForConditionalGeneration,
processor:MLlavaProcessor,
max_input_length:int=None,
history:List[dict]=None,
**kwargs) -> Tuple[str, List[dict]]:
"""
Chat with the Mllava model
Args:
text: str, the text to be sent to the model, where <image> will be the placeholder for the image
images: List[PIL.Image.Image], the images to be sent to the model, or None
model: LlavaForConditionalGeneration, the model to be used
processor: MLlavaProcessor, the processor to be used
max_input_length: int, the maximum input length
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
kwargs: dict, the generation kwargs
Returns:
Tuple[str, List[dict]], the generated text and the history of the conversation
"""
if "llama-3" in model.language_model.name_or_path.lower():
conv = conv_templates['llama_3']
terminators = [
processor.tokenizer.eos_token_id,
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
else:
conv = default_conv
terminators = None
kwargs["eos_token_id"] = terminators
conv = conv.copy()
conv.messages = []
if history is not None:
for message in history:
assert message["role"] in conv.roles
conv.append_message(message["role"], message["text"])
if text:
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], "")
history.append({"role": conv.roles[0], "text": text})
history.append({"role": conv.roles[1], "text": ""})
else:
if conv.messages[-1][0] == conv.roles[1]:
assert conv.messages[-1][1] == "", "No user message should be provided"
else:
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
conv.append_message(conv.roles[0], "")
history.append({"role": conv.roles[0], "text": ""})
else:
history = []
history.append({"role": conv.roles[0], "text": text})
history.append({"role": conv.roles[1], "text": ""})
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], "")
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
prompt = conv.get_prompt()
if images:
for i in range(len(images)):
if isinstance(images[i], str):
images[i] = PIL.Image.open(images[i])
images[i] = images[i].convert("RGB")
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
print(processor.tokenizer.decode(inputs["input_ids"][0]))
for k, v in inputs.items():
if v is not None:
if isinstance(v, torch.Tensor):
inputs[k] = v.to(model.device)
elif isinstance(v, list):
inputs[k] = [x.to(model.device) for x in v]
else:
raise ValueError(f"Invalid input type: {type(v)}")
from transformers import TextIteratorStreamer
from threading import Thread
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
kwargs["streamer"] = streamer
inputs.update(kwargs)
thread = Thread(target=model.generate, kwargs=inputs)
thread.start()
for _output in streamer:
history[-1]["text"] += _output
yield history[-1]["text"], history