from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Optional
import torch
import logging
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from IndicTransToolkit.processor import IndicProcessor
import PyPDF2
import fitz # PyMuPDF
import pytesseract
from PIL import Image
import io
import os
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
from fastapi.responses import StreamingResponse
import tempfile
# Set up logging first
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set up cache directories with fallback
def setup_cache_dirs():
"""Setup cache directories with proper permissions"""
cache_dirs = [
os.environ.get('TRANSFORMERS_CACHE', '/tmp/transformers_cache'),
os.environ.get('HF_HOME', '/tmp/huggingface_cache'),
os.environ.get('TORCH_HOME', '/tmp/torch_cache')
]
for cache_dir in cache_dirs:
try:
os.makedirs(cache_dir, exist_ok=True)
# Test write permissions
test_file = os.path.join(cache_dir, 'test_write')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
logger.info(f"✅ Cache directory ready: {cache_dir}")
except Exception as e:
logger.warning(f"⚠️ Cache directory issue {cache_dir}: {e}")
# Fallback to temp directory
fallback_dir = tempfile.mkdtemp()
if 'TRANSFORMERS_CACHE' in cache_dir:
os.environ['TRANSFORMERS_CACHE'] = fallback_dir
elif 'HF_HOME' in cache_dir:
os.environ['HF_HOME'] = fallback_dir
elif 'TORCH_HOME' in cache_dir:
os.environ['TORCH_HOME'] = fallback_dir
logger.info(f"📁 Using fallback cache: {fallback_dir}")
# Call setup at startup
setup_cache_dirs()
# Initialize FastAPI
app = FastAPI(title="IndicTrans2 Translation API", version="1.0.0")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allow all origins for Hugging Face Spaces
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global holders
tokenizer = None
model = None
ip = None
DEVICE = None
class TranslationRequest(BaseModel):
sentences: List[str]
src_lang: str
tgt_lang: str
class SimpleTranslationRequest(BaseModel):
text: str
target_language: str
source_language: Optional[str] = "eng_Latn"
@app.get("/")
async def root():
return {
"message": "IndicTrans2 Translation API",
"status": "running",
"endpoints": ["/health", "/translate", "/docs"]
}
@app.get("/health")
async def health_check():
global tokenizer, model, ip, DEVICE
models_loaded = all([tokenizer, model, ip])
return {
"status": "healthy" if models_loaded else "loading",
"device": str(DEVICE) if DEVICE else "unknown",
"model": "indictrans2-en-indic-dist-200M",
"components_loaded": {
"tokenizer": tokenizer is not None,
"model": model is not None,
"processor": ip is not None
}
}
@app.on_event("startup")
async def startup_event():
global tokenizer, model, ip, DEVICE
try:
logger.info("🚀 Starting model loading...")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {DEVICE}")
# Set memory management for CUDA
if DEVICE == "cuda":
torch.cuda.empty_cache()
# Set memory fraction to avoid OOM
torch.cuda.set_per_process_memory_fraction(0.8)
model_name = "ai4bharat/indictrans2-en-indic-dist-200M"
# Set cache directory explicitly
import os
cache_dir = os.path.expanduser("~/.cache/huggingface")
os.makedirs(cache_dir, exist_ok=True)
logger.info(f"Using cache directory: {cache_dir}")
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
cache_dir=cache_dir,
local_files_only=False
)
logger.info("✅ Tokenizer loaded")
logger.info("Loading model...")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32, # Use float16 for GPU to save memory
cache_dir=cache_dir,
local_files_only=False,
low_cpu_mem_usage=True # Enable low memory usage
).to(DEVICE)
# Set model to eval mode for inference
model.eval()
logger.info("✅ Model loaded")
logger.info("Loading IndicProcessor...")
ip = IndicProcessor(inference=True)
logger.info("✅ IndicProcessor loaded")
# Clear any remaining cache
if DEVICE == "cuda":
torch.cuda.empty_cache()
logger.info("🎉 All components loaded successfully!")
except Exception as e:
logger.error(f"❌ Failed to load components: {e}")
logger.error(f"Error type: {type(e).__name__}")
# App stays alive, health endpoint will show "loading"
@app.post("/translate")
def translate(request: TranslationRequest):
try:
# Step 1: Preprocess
batch = ip.preprocess_batch(
request.sentences,
src_lang=request.src_lang,
tgt_lang=request.tgt_lang,
)
# Step 2: Tokenize
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
# Step 3: Generate (⚡ FIXED with memory management)
with torch.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=False, # avoids "0 layers" cache bug
min_length=0,
max_length=256,
num_beams=3, # Reduced from 5 to save memory
num_return_sequences=1,
do_sample=False,
)
# Step 4: Decode
decoded = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
# Step 5: Postprocess
translations = ip.postprocess_batch(decoded, lang=request.tgt_lang)
return {
"translations": translations,
"source_language": request.src_lang,
"target_language": request.tgt_lang,
"input_sentences": request.sentences
}
except Exception as e:
logger.error(f"❌ Translation error: {e}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
@app.post("/translate-simple")
def translate_simple(request: SimpleTranslationRequest):
"""Simple translation endpoint for single text input"""
global tokenizer, model, ip, DEVICE
if not all([tokenizer, model, ip]):
raise HTTPException(status_code=503, detail="Models are still loading. Please try again in a moment.")
try:
# Convert single text to list format
sentences = [request.text]
# Step 1: Preprocess
batch = ip.preprocess_batch(
sentences,
src_lang=request.source_language,
tgt_lang=request.target_language,
)
# Step 2: Tokenize
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
# Step 3: Generate (with memory management)
with torch.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=False,
min_length=0,
max_length=256,
num_beams=3, # Reduced from 5 to save memory
num_return_sequences=1,
do_sample=False,
)
# Step 4: Decode
decoded = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
# Step 5: Postprocess
translations = ip.postprocess_batch(decoded, lang=request.target_language)
return {
"translated_text": translations[0] if translations else "",
"original_text": request.text,
"source_language": request.source_language,
"target_language": request.target_language,
"success": True
}
except Exception as e:
logger.error(f"❌ Simple translation error: {e}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
def extract_text_from_pdf(pdf_content: bytes, max_pages: int = 2) -> tuple[str, str]:
"""
Enhanced PDF text extraction with OCR fallback and memory management
Returns: (extracted_text, extraction_method)
"""
extraction_method = "Unknown"
extracted_text = ""
try:
# Method 1: Try PyPDF2 first (fastest for text-based PDFs)
pdf_file = io.BytesIO(pdf_content)
pdf_reader = PyPDF2.PdfReader(pdf_file)
# Limit pages
max_pages = min(len(pdf_reader.pages), max_pages)
for page_num in range(max_pages):
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text.strip():
extracted_text += page_text + "\n"
if extracted_text.strip():
extraction_method = "PyPDF2 (text-based)"
return extracted_text.strip(), extraction_method
except Exception as e:
logger.warning(f"PyPDF2 extraction failed: {e}")
try:
# Method 2: Try PyMuPDF (better for complex PDFs)
pdf_document = fitz.open(stream=pdf_content, filetype="pdf")
max_pages = min(len(pdf_document), max_pages)
for page_num in range(max_pages):
page = pdf_document[page_num]
page_text = page.get_text()
if page_text.strip():
extracted_text += page_text + "\n"
pdf_document.close()
if extracted_text.strip():
extraction_method = "PyMuPDF (advanced text)"
return extracted_text.strip(), extraction_method
except Exception as e:
logger.warning(f"PyMuPDF extraction failed: {e}")
try:
# Method 3: OCR fallback for scanned PDFs (with memory management)
pdf_document = fitz.open(stream=pdf_content, filetype="pdf")
max_pages = min(len(pdf_document), max_pages)
for page_num in range(max_pages):
page = pdf_document[page_num]
# Convert page to image with lower resolution to save memory
mat = fitz.Matrix(1.5, 1.5) # Reduced from 2.0 to save memory
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
# Convert to PIL Image
image = Image.open(io.BytesIO(img_data))
# Resize image if too large (memory management)
max_dimension = 2000
if max(image.size) > max_dimension:
ratio = max_dimension / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Perform OCR
page_text = pytesseract.image_to_string(image, lang='eng')
if page_text.strip():
extracted_text += page_text + "\n"
# Clean up memory
del image
del pix
pdf_document.close()
if extracted_text.strip():
extraction_method = "OCR (scanned PDF)"
return extracted_text.strip(), extraction_method
except Exception as e:
logger.warning(f"OCR extraction failed: {e}")
# If all methods fail
raise ValueError("Could not extract text from PDF. The file might be corrupted, password-protected, or contain only images without readable text.")
def chunk_text(text: str, max_chunk_size: int = 500) -> List[str]:
"""
Split text into smaller chunks for memory-efficient processing
"""
# Split by sentences first
sentences = [s.strip() for s in text.replace('\n', ' ').split('.') if s.strip()]
chunks = []
current_chunk = ""
for sentence in sentences:
# If adding this sentence would exceed the limit, start a new chunk
if len(current_chunk) + len(sentence) > max_chunk_size and current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
current_chunk += ". " + sentence if current_chunk else sentence
# Add the last chunk
if current_chunk:
chunks.append(current_chunk.strip())
# If no sentences found, split by words
if not chunks and text:
words = text.split()
current_chunk = ""
for word in words:
if len(current_chunk) + len(word) > max_chunk_size and current_chunk:
chunks.append(current_chunk.strip())
current_chunk = word
else:
current_chunk += " " + word if current_chunk else word
if current_chunk:
chunks.append(current_chunk.strip())
return chunks if chunks else [text]
@app.post("/translate-pdf")
async def translate_pdf(
file: UploadFile = File(...),
target_language: str = Form(...)
):
"""Extract text from PDF and translate it with enhanced extraction methods and memory management"""
global tokenizer, model, ip, DEVICE
if not all([tokenizer, model, ip]):
raise HTTPException(status_code=503, detail="Models are still loading. Please try again in a moment.")
# Validate file type
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
try:
# Read PDF content
pdf_content = await file.read()
# Enhanced text extraction with multiple methods
extracted_text, extraction_method = extract_text_from_pdf(pdf_content, max_pages=2)
logger.info(f"Text extracted using: {extraction_method}")
# Clean up the extracted text
extracted_text = extracted_text.strip()
# Check text length and apply chunking if needed
if len(extracted_text) > 1000: # If text is too long, use chunking
logger.info(f"Text length: {len(extracted_text)} characters. Using chunking for memory efficiency.")
text_chunks = chunk_text(extracted_text, max_chunk_size=500)
logger.info(f"Split into {len(text_chunks)} chunks")
else:
# For shorter texts, split by sentences as before
text_chunks = [sent.strip() for sent in extracted_text.split('.') if sent.strip()]
if not text_chunks:
text_chunks = [extracted_text]
# Translate chunks in batches to manage memory
all_translations = []
batch_size = 3 # Process 3 chunks at a time to avoid memory issues
for i in range(0, len(text_chunks), batch_size):
batch_chunks = text_chunks[i:i + batch_size]
try:
# Preprocess batch
batch = ip.preprocess_batch(
batch_chunks,
src_lang="eng_Latn",
tgt_lang=target_language,
)
# Tokenize with memory management
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
max_length=512, # Limit input length
).to(DEVICE)
# Generate translations
with torch.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=False,
min_length=0,
max_length=256,
num_beams=3, # Reduced from 5 to save memory
num_return_sequences=1,
do_sample=False,
)
# Decode
decoded = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
# Postprocess
batch_translations = ip.postprocess_batch(decoded, lang=target_language)
all_translations.extend(batch_translations)
# Clear GPU memory after each batch
if DEVICE == "cuda":
torch.cuda.empty_cache()
logger.info(f"Processed batch {i//batch_size + 1}/{(len(text_chunks) + batch_size - 1)//batch_size}")
except Exception as batch_error:
logger.error(f"Error processing batch {i//batch_size + 1}: {batch_error}")
# Add placeholder for failed batch
all_translations.extend(["[Translation failed for this section]"] * len(batch_chunks))
# Join translated chunks back together
if len(extracted_text) > 1000:
# For chunked text, join with spaces
translated_text = ' '.join(all_translations)
else:
# For sentence-split text, join with periods
translated_text = '. '.join(all_translations) if len(all_translations) > 1 else all_translations[0]
return {
"success": True,
"filename": file.filename,
"pages_processed": 2,
"extracted_text": extracted_text[:1000] + "..." if len(extracted_text) > 1000 else extracted_text, # Truncate for response
"translated_text": translated_text,
"target_language": target_language,
"source_language": "eng_Latn",
"extraction_method": extraction_method,
"text_length": len(extracted_text),
"chunks_processed": len(text_chunks),
"memory_management": "chunking" if len(extracted_text) > 1000 else "standard"
}
except Exception as e:
logger.error(f"❌ PDF translation error: {e}")
raise HTTPException(status_code=500, detail=f"PDF translation failed: {str(e)}")
@app.post("/clear-memory")
def clear_memory():
"""Clear GPU memory cache"""
global DEVICE
try:
if DEVICE == "cuda":
torch.cuda.empty_cache()
return {"status": "success", "message": "GPU memory cache cleared"}
else:
return {"status": "info", "message": "Running on CPU, no GPU memory to clear"}
except Exception as e:
logger.error(f"Error clearing memory: {e}")
return {"status": "error", "message": f"Failed to clear memory: {str(e)}"}
@app.get("/memory-info")
def get_memory_info():
"""Get current memory usage information"""
global DEVICE
try:
if DEVICE == "cuda":
allocated = torch.cuda.memory_allocated() / 1024**3 # GB
cached = torch.cuda.memory_reserved() / 1024**3 # GB
return {
"device": DEVICE,
"allocated_gb": round(allocated, 2),
"cached_gb": round(cached, 2),
"total_memory_gb": round(torch.cuda.get_device_properties(0).total_memory / 1024**3, 2)
}
else:
return {"device": DEVICE, "message": "Running on CPU"}
except Exception as e:
return {"error": f"Failed to get memory info: {str(e)}"}
def create_pdf_from_text(original_text: str, translated_text: str, filename: str, target_language: str) -> io.BytesIO:
"""Create a PDF with original and translated text"""
buffer = io.BytesIO()
# Create PDF document
doc = SimpleDocTemplate(buffer, pagesize=A4, topMargin=1*inch, bottomMargin=1*inch)
# Get styles
styles = getSampleStyleSheet()
# Create custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=20,
textColor='#2563eb'
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=12,
textColor='#374151'
)
body_style = ParagraphStyle(
'CustomBody',
parent=styles['Normal'],
fontSize=11,
spaceAfter=12,
leading=16
)
# Build content
content = []
# Title
content.append(Paragraph("PDF Translation Result", title_style))
content.append(Spacer(1, 12))
# File info
content.append(Paragraph(f"Original File: {filename}", body_style))
content.append(Paragraph(f"Target Language: {target_language}", body_style))
content.append(Spacer(1, 20))
# Original text section
content.append(Paragraph("Original Text", heading_style))
# Split long text into paragraphs
original_paragraphs = original_text.split('\n\n') if '\n\n' in original_text else [original_text]
for para in original_paragraphs:
if para.strip():
content.append(Paragraph(para.strip(), body_style))
content.append(Spacer(1, 20))
# Translated text section
content.append(Paragraph("Translated Text", heading_style))
# Split long text into paragraphs
translated_paragraphs = translated_text.split('\n\n') if '\n\n' in translated_text else [translated_text]
for para in translated_paragraphs:
if para.strip():
content.append(Paragraph(para.strip(), body_style))
# Build PDF
doc.build(content)
buffer.seek(0)
return buffer
@app.post("/download-pdf")
async def download_translated_pdf(
original_text: str = Form(...),
translated_text: str = Form(...),
filename: str = Form(...),
target_language: str = Form(...)
):
"""Generate and download translated PDF"""
try:
# Create PDF with both original and translated text
pdf_buffer = create_pdf_from_text(
original_text=original_text,
translated_text=translated_text,
filename=filename,
target_language=target_language
)
# Create filename for download
base_name = os.path.splitext(filename)[0]
download_filename = f"{base_name}_translated_{target_language}.pdf"
# Return as streaming response
return StreamingResponse(
pdf_buffer,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename={download_filename}"}
)
except Exception as e:
logger.error(f"❌ PDF generation error: {e}")
raise HTTPException(status_code=500, detail=f"PDF generation failed: {str(e)}")
def remove_duplicates_from_text(text: str) -> str:
"""Remove duplicate sentences and lines from text"""
lines = text.split('\n')
unique_lines = []
seen_lines = set()
for line in lines:
clean_line = line.strip().lower()
# Only add if not empty, not seen before, and has meaningful content
if clean_line and clean_line not in seen_lines and len(clean_line) > 3:
unique_lines.append(line.strip())
seen_lines.add(clean_line)
# Also remove duplicate sentences within the text
sentences = '. '.join(unique_lines).split('.')
unique_sentences = []
seen_sentences = set()
for sentence in sentences:
clean_sentence = sentence.strip().lower()
if clean_sentence and clean_sentence not in seen_sentences and len(clean_sentence) > 5:
unique_sentences.append(sentence.strip())
seen_sentences.add(clean_sentence)
return '. '.join(unique_sentences)
@app.post("/translate-pdf-enhanced")
async def translate_pdf_enhanced(
file: UploadFile = File(...),
target_language: str = Form(...)
):
"""Enhanced PDF translation with duplicate removal and download option"""
global tokenizer, model, ip, DEVICE
if not all([tokenizer, model, ip]):
raise HTTPException(status_code=503, detail="Models are still loading. Please try again in a moment.")
# Validate file type
if not file.filename.lower().endswith('.pdf'):
raise HTTPException(status_code=400, detail="Only PDF files are supported")
try:
# Read PDF content
pdf_content = await file.read()
# Enhanced text extraction with multiple methods
extracted_text, extraction_method = extract_text_from_pdf(pdf_content, max_pages=2)
logger.info(f"Text extracted using: {extraction_method}")
# Clean up and remove duplicates from extracted text
extracted_text = remove_duplicates_from_text(extracted_text.strip())
# Check text length and apply chunking if needed
if len(extracted_text) > 1000:
logger.info(f"Text length: {len(extracted_text)} characters. Using chunking for memory efficiency.")
text_chunks = chunk_text(extracted_text, max_chunk_size=500)
logger.info(f"Split into {len(text_chunks)} chunks")
else:
text_chunks = [sent.strip() for sent in extracted_text.split('.') if sent.strip()]
if not text_chunks:
text_chunks = [extracted_text]
# Translate chunks in batches
all_translations = []
batch_size = 3
for i in range(0, len(text_chunks), batch_size):
batch_chunks = text_chunks[i:i + batch_size]
try:
batch = ip.preprocess_batch(
batch_chunks,
src_lang="eng_Latn",
tgt_lang=target_language,
)
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
max_length=512,
).to(DEVICE)
with torch.no_grad():
generated_tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=False,
min_length=0,
max_length=256,
num_beams=3,
num_return_sequences=1,
do_sample=False,
)
decoded = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
batch_translations = ip.postprocess_batch(decoded, lang=target_language)
all_translations.extend(batch_translations)
if DEVICE == "cuda":
torch.cuda.empty_cache()
logger.info(f"Processed batch {i//batch_size + 1}/{(len(text_chunks) + batch_size - 1)//batch_size}")
except Exception as batch_error:
logger.error(f"Error processing batch {i//batch_size + 1}: {batch_error}")
all_translations.extend(["[Translation failed for this section]"] * len(batch_chunks))
# Join translated chunks
if len(extracted_text) > 1000:
translated_text = ' '.join(all_translations)
else:
translated_text = '. '.join(all_translations) if len(all_translations) > 1 else all_translations[0]
# Remove duplicates from translated text as well
translated_text = remove_duplicates_from_text(translated_text)
return {
"success": True,
"filename": file.filename,
"pages_processed": 2,
"extracted_text": extracted_text,
"translated_text": translated_text,
"target_language": target_language,
"source_language": "eng_Latn",
"extraction_method": extraction_method,
"text_length": len(extracted_text),
"chunks_processed": len(text_chunks),
"memory_management": "chunking" if len(extracted_text) > 1000 else "standard",
"duplicates_removed": True,
"download_available": True
}
except Exception as e:
logger.error(f"❌ PDF translation error: {e}")
raise HTTPException(status_code=500, detail=f"PDF translation failed: {str(e)}")
@app.post("/download-translated-pdf")
async def download_translated_pdf_endpoint(
original_text: str = Form(...),
translated_text: str = Form(...),
filename: str = Form(...),
target_language: str = Form(...)
):
"""Generate and download translated PDF"""
try:
# Create PDF with both original and translated text
pdf_buffer = create_pdf_from_text(
original_text=original_text,
translated_text=translated_text,
filename=filename,
target_language=target_language
)
# Create filename for download
base_name = os.path.splitext(filename)[0]
download_filename = f"{base_name}_translated_{target_language}.pdf"
# Return as streaming response
return StreamingResponse(
pdf_buffer,
media_type="application/pdf",
headers={"Content-Disposition": f"attachment; filename={download_filename}"}
)
except Exception as e:
logger.error(f"❌ PDF generation error: {e}")
raise HTTPException(status_code=500, detail=f"PDF generation failed: {str(e)}")