jfrery-zama
commited on
Commit
•
2b591f4
1
Parent(s):
b5afc24
add probability along with detected words
Browse files- README copy.md +0 -55
- README.md +50 -7
- app.py +15 -7
- fhe_anonymizer.py +34 -22
README copy.md
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Encrypted Anonymization Using Fully Homomorphic Encryption
|
3 |
-
emoji: 🕵️♂️ 🔒
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: purple
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.40.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: true
|
10 |
-
tags:
|
11 |
-
- FHE
|
12 |
-
- PPML
|
13 |
-
- privacy
|
14 |
-
- privacy preserving machine learning
|
15 |
-
- data anonymization
|
16 |
-
- homomorphic encryption
|
17 |
-
- security
|
18 |
-
python_version: 3.10.11
|
19 |
-
---
|
20 |
-
|
21 |
-
# Data Anonymization using FHE
|
22 |
-
|
23 |
-
## Run the application locally
|
24 |
-
|
25 |
-
### Install the dependencies
|
26 |
-
|
27 |
-
First, create a virtual env and activate it:
|
28 |
-
|
29 |
-
```bash
|
30 |
-
python3 -m venv .venv
|
31 |
-
source .venv/bin/activate
|
32 |
-
```
|
33 |
-
|
34 |
-
Then, install the required packages:
|
35 |
-
|
36 |
-
```python
|
37 |
-
pip3 install pip --upgrade
|
38 |
-
pip3 install -U pip wheel setuptools --ignore-installed
|
39 |
-
pip3 install -r requirements.txt --ignore-installed
|
40 |
-
```
|
41 |
-
|
42 |
-
The above steps should only be done once.
|
43 |
-
|
44 |
-
## Run the app
|
45 |
-
|
46 |
-
In a terminal, run:
|
47 |
-
|
48 |
-
```bash
|
49 |
-
source .venv/bin/activate
|
50 |
-
python3 anonymize_app.py
|
51 |
-
```
|
52 |
-
|
53 |
-
## Interact with the application
|
54 |
-
|
55 |
-
Open the given URL link (search for a line like `Running on local URL: http://127.0.0.1:8888/`).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,12 +1,55 @@
|
|
1 |
---
|
2 |
-
title: Encrypted Anonymization
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Encrypted Anonymization Using Fully Homomorphic Encryption
|
3 |
+
emoji: 🕵️♂️ 🔒
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.40.0
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
tags:
|
11 |
+
- FHE
|
12 |
+
- PPML
|
13 |
+
- privacy
|
14 |
+
- privacy preserving machine learning
|
15 |
+
- data anonymization
|
16 |
+
- homomorphic encryption
|
17 |
+
- security
|
18 |
+
python_version: 3.8.16
|
19 |
---
|
20 |
|
21 |
+
# Data Anonymization using FHE
|
22 |
+
|
23 |
+
## Run the application locally
|
24 |
+
|
25 |
+
### Install the dependencies
|
26 |
+
|
27 |
+
First, create a virtual env and activate it:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
python3 -m venv .venv
|
31 |
+
source .venv/bin/activate
|
32 |
+
```
|
33 |
+
|
34 |
+
Then, install the required packages:
|
35 |
+
|
36 |
+
```python
|
37 |
+
pip3 install pip --upgrade
|
38 |
+
pip3 install -U pip wheel setuptools --ignore-installed
|
39 |
+
pip3 install -r requirements.txt --ignore-installed
|
40 |
+
```
|
41 |
+
|
42 |
+
The above steps should only be done once.
|
43 |
+
|
44 |
+
## Run the app
|
45 |
+
|
46 |
+
In a terminal, run:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
source .venv/bin/activate
|
50 |
+
python3 app.py
|
51 |
+
```
|
52 |
+
|
53 |
+
## Interact with the application
|
54 |
+
|
55 |
+
Open the given URL link (search for a line like `Running on local URL: http://127.0.0.1:8888/`).
|
app.py
CHANGED
@@ -10,12 +10,15 @@ anonymizer = FHEAnonymizer()
|
|
10 |
|
11 |
|
12 |
def deidentify_text(input_text):
|
13 |
-
anonymized_text,
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
17 |
else:
|
18 |
-
identified_df = pd.DataFrame(columns=["Identified Words"])
|
19 |
return anonymized_text, identified_df
|
20 |
|
21 |
|
@@ -76,7 +79,12 @@ with demo:
|
|
76 |
)
|
77 |
|
78 |
with gr.Row():
|
79 |
-
input_text = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
anonymized_text_output = gr.Textbox(label="Anonymized Text", lines=13)
|
82 |
|
@@ -92,4 +100,4 @@ with demo:
|
|
92 |
|
93 |
|
94 |
# Launch the app
|
95 |
-
demo.launch(share=False)
|
|
|
10 |
|
11 |
|
12 |
def deidentify_text(input_text):
|
13 |
+
anonymized_text, identified_words_with_prob = anonymizer(input_text)
|
14 |
+
|
15 |
+
# Convert the list of identified words and probabilities into a DataFrame
|
16 |
+
if identified_words_with_prob:
|
17 |
+
identified_df = pd.DataFrame(
|
18 |
+
identified_words_with_prob, columns=["Identified Words", "Probability"]
|
19 |
+
)
|
20 |
else:
|
21 |
+
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
|
22 |
return anonymized_text, identified_df
|
23 |
|
24 |
|
|
|
79 |
)
|
80 |
|
81 |
with gr.Row():
|
82 |
+
input_text = gr.Textbox(
|
83 |
+
value=default_demo_text,
|
84 |
+
lines=13,
|
85 |
+
placeholder="Input text here...",
|
86 |
+
label="Input",
|
87 |
+
)
|
88 |
|
89 |
anonymized_text_output = gr.Textbox(label="Anonymized Text", lines=13)
|
90 |
|
|
|
100 |
|
101 |
|
102 |
# Launch the app
|
103 |
+
demo.launch(share=False)
|
fhe_anonymizer.py
CHANGED
@@ -6,10 +6,13 @@ from concrete.ml.common.serialization.loaders import load
|
|
6 |
|
7 |
base_dir = Path(__file__).parent
|
8 |
|
|
|
9 |
class FHEAnonymizer:
|
10 |
def __init__(self, punctuation_list=".,!?:;"):
|
11 |
|
12 |
-
self.embeddings_model = gensim.models.FastText.load(
|
|
|
|
|
13 |
self.punctuation_list = punctuation_list
|
14 |
with open(base_dir / "cml_xgboost.model", "r") as model_file:
|
15 |
self.fhe_ner_detection = load(file=model_file)
|
@@ -28,17 +31,19 @@ class FHEAnonymizer:
|
|
28 |
|
29 |
def __call__(self, text: str):
|
30 |
text = self.preprocess_sentences(text)
|
31 |
-
|
32 |
new_text = []
|
33 |
|
34 |
for word in text.split():
|
35 |
# Prediction for each word
|
36 |
x = self.embeddings_model.wv[word][None]
|
37 |
-
|
38 |
# prediction = self.fhe_inference(x).argmax(1)[0]
|
39 |
-
|
|
|
|
|
40 |
if prediction == 1:
|
41 |
-
|
42 |
new_text.append("<REMOVED>")
|
43 |
else:
|
44 |
new_text.append(word)
|
@@ -46,29 +51,36 @@ class FHEAnonymizer:
|
|
46 |
# Joining the modified text
|
47 |
modified_text = " ".join(new_text)
|
48 |
|
49 |
-
return modified_text,
|
50 |
|
51 |
def preprocess_sentences(self, sentence, verbose=False):
|
52 |
"""Preprocess the sentence."""
|
53 |
|
54 |
-
sentence = re.sub(r
|
55 |
-
if verbose:
|
|
|
56 |
|
57 |
-
sentence = re.sub(
|
58 |
-
if verbose:
|
|
|
59 |
|
60 |
sentence = re.sub(r"'s\b", " s", sentence)
|
61 |
-
if verbose:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
return sentence
|
|
|
6 |
|
7 |
base_dir = Path(__file__).parent
|
8 |
|
9 |
+
|
10 |
class FHEAnonymizer:
|
11 |
def __init__(self, punctuation_list=".,!?:;"):
|
12 |
|
13 |
+
self.embeddings_model = gensim.models.FastText.load(
|
14 |
+
str(base_dir / "embedded_model.model")
|
15 |
+
)
|
16 |
self.punctuation_list = punctuation_list
|
17 |
with open(base_dir / "cml_xgboost.model", "r") as model_file:
|
18 |
self.fhe_ner_detection = load(file=model_file)
|
|
|
31 |
|
32 |
def __call__(self, text: str):
|
33 |
text = self.preprocess_sentences(text)
|
34 |
+
identified_words_with_prob = [] # tuples of (word, probability)
|
35 |
new_text = []
|
36 |
|
37 |
for word in text.split():
|
38 |
# Prediction for each word
|
39 |
x = self.embeddings_model.wv[word][None]
|
40 |
+
prediction_proba = self.fhe_ner_detection.predict_proba(x)
|
41 |
# prediction = self.fhe_inference(x).argmax(1)[0]
|
42 |
+
# print(word, prediction)
|
43 |
+
probability = prediction_proba[0][1]
|
44 |
+
prediction = probability >= 0.5
|
45 |
if prediction == 1:
|
46 |
+
identified_words_with_prob.append((word, probability))
|
47 |
new_text.append("<REMOVED>")
|
48 |
else:
|
49 |
new_text.append(word)
|
|
|
51 |
# Joining the modified text
|
52 |
modified_text = " ".join(new_text)
|
53 |
|
54 |
+
return modified_text, identified_words_with_prob
|
55 |
|
56 |
def preprocess_sentences(self, sentence, verbose=False):
|
57 |
"""Preprocess the sentence."""
|
58 |
|
59 |
+
sentence = re.sub(r"\n+", " ", sentence)
|
60 |
+
if verbose:
|
61 |
+
print(sentence)
|
62 |
|
63 |
+
sentence = re.sub(" +", " ", sentence)
|
64 |
+
if verbose:
|
65 |
+
print(sentence)
|
66 |
|
67 |
sentence = re.sub(r"'s\b", " s", sentence)
|
68 |
+
if verbose:
|
69 |
+
print(sentence)
|
70 |
+
|
71 |
+
sentence = re.sub(r"\s([,.!?;:])", r"\1", sentence)
|
72 |
+
if verbose:
|
73 |
+
print(sentence)
|
74 |
+
|
75 |
+
pattern = r"(?<!\w)[{}]|[{}](?!\w)".format(
|
76 |
+
re.escape(self.punctuation_list), re.escape(self.punctuation_list)
|
77 |
+
)
|
78 |
+
sentence = re.sub(pattern, "", sentence)
|
79 |
+
if verbose:
|
80 |
+
print(sentence)
|
81 |
+
|
82 |
+
sentence = re.sub(r"\s([,.!?;:])", r"\1", sentence)
|
83 |
+
if verbose:
|
84 |
+
print(sentence)
|
85 |
|
86 |
return sentence
|