import numpy as np import torch import torch.nn as nn class Downsampler(nn.Module): """ http://www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf """ def __init__( self, n_planes, factor, kernel_type, phase=0, kernel_width=None, support=None, sigma=None, preserve_size=False ): super(Downsampler, self).__init__() assert phase in [0, 0.5], "phase should be 0 or 0.5" if kernel_type == "lanczos2": support = 2 kernel_width = 4 * factor + 1 kernel_type_ = "lanczos" elif kernel_type == "lanczos3": support = 3 kernel_width = 6 * factor + 1 kernel_type_ = "lanczos" elif kernel_type == "gauss12": kernel_width = 7 sigma = 1 / 2 kernel_type_ = "gauss" elif kernel_type == "gauss1sq2": kernel_width = 9 sigma = 1.0 / np.sqrt(2) kernel_type_ = "gauss" elif kernel_type in ["lanczos", "gauss", "box"]: kernel_type_ = kernel_type else: assert False, "wrong name kernel" # note that `kernel width` will be different to actual size for phase = 1/2 self.kernel = get_kernel(factor, kernel_type_, phase, kernel_width, support=support, sigma=sigma) downsampler = nn.Conv2d(n_planes, n_planes, kernel_size=self.kernel.shape, stride=factor, padding=0) downsampler.weight.data[:] = 0 downsampler.bias.data[:] = 0 kernel_torch = torch.from_numpy(self.kernel) for i in range(n_planes): downsampler.weight.data[i, i] = kernel_torch self.downsampler_ = downsampler if preserve_size: if self.kernel.shape[0] % 2 == 1: pad = int((self.kernel.shape[0] - 1) / 2.0) else: pad = int((self.kernel.shape[0] - factor) / 2.0) self.padding = nn.ReplicationPad2d(pad) self.preserve_size = preserve_size def forward(self, input): if self.preserve_size: x = self.padding(input) else: x = input self.x = x return self.downsampler_(x) def get_kernel(factor, kernel_type, phase, kernel_width, support=None, sigma=None): assert kernel_type in ["lanczos", "gauss", "box"] # factor = float(factor) if phase == 0.5 and kernel_type != "box": kernel = np.zeros([kernel_width - 1, kernel_width - 1]) else: kernel = np.zeros([kernel_width, kernel_width]) if kernel_type == "box": assert phase == 0.5, "Box filter is always half-phased" kernel[:] = 1.0 / (kernel_width * kernel_width) elif kernel_type == "gauss": assert sigma, "sigma is not specified" assert phase != 0.5, "phase 1/2 for gauss not implemented" center = (kernel_width + 1.0) / 2.0 print(center, kernel_width) sigma_sq = sigma * sigma for i in range(1, kernel.shape[0] + 1): for j in range(1, kernel.shape[1] + 1): di = (i - center) / 2.0 dj = (j - center) / 2.0 kernel[i - 1][j - 1] = np.exp(-(di * di + dj * dj) / (2 * sigma_sq)) kernel[i - 1][j - 1] = kernel[i - 1][j - 1] / (2.0 * np.pi * sigma_sq) elif kernel_type == "lanczos": assert support, "support is not specified" center = (kernel_width + 1) / 2.0 for i in range(1, kernel.shape[0] + 1): for j in range(1, kernel.shape[1] + 1): if phase == 0.5: di = abs(i + 0.5 - center) / factor dj = abs(j + 0.5 - center) / factor else: di = abs(i - center) / factor dj = abs(j - center) / factor pi_sq = np.pi * np.pi val = 1 if di != 0: val = val * support * np.sin(np.pi * di) * np.sin(np.pi * di / support) val = val / (np.pi * np.pi * di * di) if dj != 0: val = val * support * np.sin(np.pi * dj) * np.sin(np.pi * dj / support) val = val / (np.pi * np.pi * dj * dj) kernel[i - 1][j - 1] = val else: assert False, "wrong method name" kernel /= kernel.sum() return kernel # a = Downsampler(n_planes=3, factor=2, kernel_type='lanczos2', phase='1', preserve_size=True) ################# # Learnable downsampler # KS = 32 # dow = nn.Sequential(nn.ReplicationPad2d(int((KS - factor) / 2.)), nn.Conv2d(1,1,KS,factor)) # class Apply(nn.Module): # def __init__(self, what, dim, *args): # super(Apply, self).__init__() # self.dim = dim # self.what = what # def forward(self, input): # inputs = [] # for i in range(input.size(self.dim)): # inputs.append(self.what(input.narrow(self.dim, i, 1))) # return torch.cat(inputs, dim=self.dim) # def __len__(self): # return len(self._modules) # downs = Apply(dow, 1) # downs.type(dtype)(net_input.type(dtype)).size()