import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers import pipeline import torch import base64 import tempfile import os checkpoint = "MBZUAI/LaMini-Flan-T5-248M" #model and tokenizer loading tokenizer = T5Tokenizer.from_pretrained(checkpoint) with tempfile.TemporaryDirectory() as offload_folder: base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32, offload_folder=offload_folder) #file loader and preprocessing def file_preprocessing(file): loader = PyPDFLoader(file) pages = loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50) texts = text_splitter.split_documents(pages) final_texts = "" for text in texts: print(text) final_texts = final_texts + text.page_content return final_texts #LLM pipeline def llm_pipeline(filepath): pipe_sum = pipeline( 'summarization', model = base_model, tokenizer = tokenizer, max_length = 500, min_length = 50) input_text = file_preprocessing(filepath) result = pipe_sum(input_text) result = result[0]['summary_text'] return result def main(): st.title("Document Summarization App") uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf']) if uploaded_file is not None: if st.button("Summarize"): col2 = st.columns(1) # Use a temporary filename directly with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(uploaded_file.read()) temp_file.flush() # Ensure contents are written to disk filepath = temp_file.name try: summary = llm_pipeline(filepath) st.success(summary) # Display only the summary except Exception as e: st.error(f"An error occurred during summarization: {e}") # Clean up the temporary file os.remove(filepath) if __name__ == "__main__": main()