# Importing Necessary Packages and classes from transformers import AutoImageProcessor, AutoModelForImageClassification from IPython.display import display, Javascript from base64 import b64decode from IPython.display import Image import cv2 import openai import pandas as pd import time from transformers import BarkModel, BarkProcessor from IPython.display import Audio ''' # Using captured images import cv2 # Open a connection to the webcam (0 is usually the default webcam) cap = cv2.VideoCapture(0) # Check if the webcam is opened successfully if not cap.isOpened(): print("Error: Could not open the webcam.") exit() while True: # Read a frame from the webcam ret, frame = cap.read() # Display the captured frame cv2.imshow('Webcam', frame) break # Release the webcam and close the OpenCV windows cap.release() cv2.destroyAllWindows() image=frame ''' image = cv2.imread('n02106662_320.jpg') # Using the pre-trained Dog Breed Identification Model image_processor = AutoImageProcessor.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit") dog_breed_model = AutoModelForImageClassification.from_pretrained("wesleyacheng/dog-breeds-multiclass-image-classification-with-vit") # Importing the saved image #img_path='/content/n02088094_60.jpg' #image=cv2.imread(img_path) # Preprocessing the captured image using pre-trained model based preprocessor inputs = image_processor(images=image, return_tensors="pt") # Predicting the output using model from huggingface outputs = dog_breed_model(**inputs) logits = outputs.logits # Finding the exact output class and corresponding label predicted_class_idx = logits.argmax(-1).item() predicted_class_actual=dog_breed_model.config.id2label[predicted_class_idx] predicted_class_actual=predicted_class_actual.split("_") str1="" for ele in predicted_class_actual: str1+=ele+" " print("Predicted class:", str1) # Specifying the OpenAI API key openai.api_key = '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' # Specifying the chatGPT engine def get_completion(prompt, model="gpt-3.5-turbo"): messages = [{"role": "user", "content": prompt}] response = openai.ChatCompletion.create( model=model, messages=messages, temperature=0, ) return response.choices[0].message["content"] # Getting simple data from ChatGPT API prompt = "chracterstics and behaviour of "+str1+" in a paragraph" response = get_completion(prompt) print(response) # Import the Gtts module for text # to speech conversion from gtts import gTTS # import Os module to start the audio file import os # Language we want to use language = 'en' output = gTTS(text=response, lang=language, slow=False) output.save("output.mp3") Audio("output.mp3",rate=24000)