from huggingface_hub import InferenceClient import gradio as gr # Set up the client for Mistral model inference client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") # Function to format the conversation history def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST] {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt # Text generation function with parameters def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): # Ensure temperature and top_p are correctly set temperature = max(float(temperature), 1e-2) # Prevent temperature going below 0.01 top_p = float(top_p) # Keyword arguments for generation configuration generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, # Ensures results are reproducible ) # Format the prompt with the user's message and history formatted_prompt = format_prompt(prompt, history) # Call the text generation endpoint stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" # Initialize an empty string for the output # Stream the response token by token for response in stream: output += response.token.text # Append the generated tokens to output yield output # Yield partial output for real-time display return output # Additional inputs (sliders) for controlling generation parameters additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs" ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens" ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values sample more low-probability tokens" ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens" ) ] # Gradio Chat Interface for the chatbot gr.ChatInterface( fn=generate, # The generate function is called when the user submits input chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, # Sliders for adjusting generation parameters title="Mistral 7B v0.3 ChatGPT Clone", # Title for the interface description="A ChatGPT clone using Mistral 7B model. Adjust parameters to fine-tune the generation." ).launch(show_api=False) # Launch the interface without showing the API key