from funasr import AutoModel from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks from modelscope import snapshot_download # local_dir_root = "/models_from_modelscope" # model_dir = snapshot_download('iic/speech_frcrn_ans_cirm_16k') # model = AutoModel(model="paraformer-zh", vad_model="fsmn-vad", punc_model="ct-punc", # # spk_model="cam++", # ) # res = model.generate(input="test1.mp3") # # text = res[0]["text"] # # print(text) inference_pipeline = pipeline( task = Tasks.auto_speech_recognition, model = 'E:/Py_api_test/ASR_api/models_from_modelscope/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch', vad_model = "E:/Py_api_test/ASR_api/models_from_modelscope/speech_fsmn_vad_zh-cn-16k-common-pytorch", punc_model = "E:/Py_api_test/ASR_api/models_from_modelscope/punc_ct-transformer_cn-en-common-vocab471067-large", ) param_dict = {} param_dict['use_timestamp'] = False rec_result = inference_pipeline(input="output.mp3", params=param_dict) # print(rec_result["text"])