import os
import sys
import re
import uuid
import tempfile
import json
from argparse import ArgumentParser
from threading import Thread
from queue import Queue

import torch
import torchaudio
import gradio as gr
import whisper
from transformers import (
    WhisperFeatureExtractor, 
    AutoTokenizer, 
    AutoModel,
    AutoModelForCausalLM
)
from transformers.generation.streamers import BaseStreamer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from speech_tokenizer.utils import extract_speech_token

# Add local paths
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")

from flow_inference import AudioDecoder

# RAG imports
from langchain_community.document_loaders import *
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import joblib

import spaces

# Token streamer for generation
class TokenStreamer(BaseStreamer):
    def __init__(self, skip_prompt: bool = False, timeout=None):
        self.skip_prompt = skip_prompt
        self.token_queue = Queue()
        self.stop_signal = None
        self.next_tokens_are_prompt = True
        self.timeout = timeout

    def put(self, value):
        if len(value.shape) > 1 and value.shape[0] > 1:
            raise ValueError("TextStreamer only supports batch size 1")
        elif len(value.shape) > 1:
            value = value[0]

        if self.skip_prompt and self.next_tokens_are_prompt:
            self.next_tokens_are_prompt = False
            return

        for token in value.tolist():
            self.token_queue.put(token)

    def end(self):
        self.token_queue.put(self.stop_signal)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.token_queue.get(timeout=self.timeout)
        if value == self.stop_signal:
            raise StopIteration()
        else:
            return value

# File loader mapping
LOADER_MAPPING = {
    '.pdf': PyPDFLoader,
    '.txt': TextLoader,
    '.md': UnstructuredMarkdownLoader,
    '.csv': CSVLoader,
    '.jpg': UnstructuredImageLoader,
    '.jpeg': UnstructuredImageLoader,
    '.png': UnstructuredImageLoader,
    '.json': JSONLoader,
    '.html': BSHTMLLoader,
    '.htm': BSHTMLLoader
}

def load_single_file(file_path):
    _, ext = os.path.splitext(file_path)
    ext = ext.lower()
    
    loader_class = LOADER_MAPPING.get(ext)
    if not loader_class:
        print(f"Unsupported file type: {ext}")
        return None
        
    loader = loader_class(file_path)
    docs = list(loader.lazy_load())
    return docs

def load_files(file_paths: list):
    if not file_paths:
        return []
    
    docs = []
    for file_path in tqdm(file_paths):
        print("Loading docs:", file_path)
        loaded_docs = load_single_file(file_path)
        if loaded_docs:
            docs.extend(loaded_docs)
    return docs

def split_text(txt, chunk_size=200, overlap=20):
    if not txt:
        return None
    
    splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
    docs = splitter.split_documents(txt)
    return docs

def create_embedding_model(model_file):
    embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
    return embedding

def save_file_paths(store_path, file_paths):
    joblib.dump(file_paths, f'{store_path}/file_paths.pkl')

def load_file_paths(store_path):
    file_paths_file = f'{store_path}/file_paths.pkl'
    if os.path.exists(file_paths_file):
        return joblib.load(file_paths_file)
    return None

def file_paths_match(store_path, file_paths):
    saved_file_paths = load_file_paths(store_path)
    return saved_file_paths == file_paths

def create_vector_store(docs, store_file, embeddings):
    vector_store = FAISS.from_documents(docs, embeddings)
    vector_store.save_local(store_file)
    return vector_store

def load_vector_store(store_path, embeddings):
    if os.path.exists(store_path):
        vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True)
        return vector_store
    else:
        return None

def load_or_create_store(store_path, file_paths, embeddings):
    if os.path.exists(store_path) and file_paths_match(store_path, file_paths):
        print("Vector database is consistent with last use, no need to rewrite")
        vector_store = load_vector_store(store_path, embeddings)
        if vector_store:
            return vector_store
    
    print("Rewriting database")
    pages = load_files(file_paths)
    docs = split_text(pages)
    vector_store = create_vector_store(docs, store_path, embeddings)
    save_file_paths(store_path, file_paths)
    return vector_store

def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
    retriever = vector_store.as_retriever(
        search_type="similarity_score_threshold", 
        search_kwargs={"score_threshold": relevance_threshold, "k": k}
    )
    similar_docs = retriever.invoke(query)
    context = [doc.page_content for doc in similar_docs]
    return context

@spaces.GPU
class ModelWorker:
    def __init__(self, model_path, device='cuda'):
        self.device = device
        self.glm_model = AutoModel.from_pretrained(
            model_path, 
            trust_remote_code=True,
            device=device
        ).to(device).eval()
        self.glm_tokenizer = AutoTokenizer.from_pretrained(
            model_path, 
            trust_remote_code=True
        )

    @torch.inference_mode()
    def generate_stream(self, params):
        prompt = params["prompt"]
        temperature = float(params.get("temperature", 1.0))
        top_p = float(params.get("top_p", 1.0))
        max_new_tokens = int(params.get("max_new_tokens", 256))

        inputs = self.glm_tokenizer([prompt], return_tensors="pt")
        inputs = inputs.to(self.device)
        streamer = TokenStreamer(skip_prompt=True)
        
        thread = Thread(
            target=self.glm_model.generate,
            kwargs=dict(
                **inputs,
                max_new_tokens=int(max_new_tokens),
                temperature=float(temperature),
                top_p=float(top_p),
                streamer=streamer
            )
        )
        thread.start()
        
        for token_id in streamer:
            yield token_id

    def generate_stream_gate(self, params):
        try:
            for x in self.generate_stream(params):
                yield x
        except Exception as e:
            print("Caught Unknown Error", e)
            ret = "Server Error"
            yield ret

def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths):
    embedding_model = create_embedding_model(Embedding_Model)
    vector_store = load_or_create_store(store_path, file_paths, embedding_model)
    return vector_store, embedding_model

def handle_file_upload(files):
    if not files:
        return None
    file_paths = [file.name for file in files]
    return file_paths

def reinitialize_database(files, progress=gr.Progress()):
    global vector_store, embedding_model
    
    if not files:
        return "No files uploaded. Please upload files first."
        
    file_paths = [file.name for file in files]
    
    progress(0, desc="Initializing embedding model...")
    embedding_model = create_embedding_model(Embedding_Model)
    
    progress(0.3, desc="Loading documents...")
    pages = load_files(file_paths)
    
    progress(0.5, desc="Splitting text...")
    docs = split_text(pages)
    
    progress(0.7, desc="Creating vector store...")
    vector_store = create_vector_store(docs, store_path, embedding_model)
    save_file_paths(store_path, file_paths)
    
    return "Database reinitialized successfully!"


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default="7860")
    parser.add_argument("--flow-path", type=str, default="THUDM/glm-4-voice-decoder")
    parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
    parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
    parser.add_argument("--whisper_model", type=str, default="base")
    parser.add_argument("--share", action='store_true')
    args = parser.parse_args()

    # Define model configurations
    flow_config = os.path.join(args.flow_path, "config.yaml")
    flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
    hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
    device = "cuda"
    
    # Global variables
    audio_decoder = None
    whisper_model = None
    feature_extractor = None
    glm_model = None
    glm_tokenizer = None
    vector_store = None
    embedding_model = None
    whisper_transcribe_model = None
    model_worker = None

    # RAG configuration
    Embedding_Model = '/root/autodl-tmp/rag/multilingual-e5-large-instruct'
    file_paths = ['/root/autodl-tmp/rag/me.txt', "/root/autodl-tmp/rag/2024-Wealth-Outlook-MidYear-Edition.pdf"]
    store_path = '/root/autodl-tmp/rag/me.faiss'

    def initialize_fn():
        global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
        global vector_store, embedding_model, whisper_transcribe_model, model_worker
    
        if audio_decoder is not None:
            return
    
        model_worker = ModelWorker(args.model_path, device)
        glm_tokenizer = model_worker.glm_tokenizer
    
        audio_decoder = AudioDecoder(
            config_path=flow_config,
            flow_ckpt_path=flow_checkpoint,
            hift_ckpt_path=hift_checkpoint,
            device=device
        )
    
        whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
        feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
    
        embedding_model = create_embedding_model(Embedding_Model)
        vector_store = load_or_create_store(store_path, file_paths, embedding_model)
    
        whisper_transcribe_model = whisper.load_model("/root/autodl-tmp/whisper/base/base.pt")

    def clear_fn():
        return [], [], '', '', '', None, None

    def inference_fn(
            temperature: float,
            top_p: float,
            max_new_token: int,
            input_mode,
            audio_path: str | None,
            input_text: str | None,
            history: list[dict],
            previous_input_tokens: str,
            previous_completion_tokens: str,
    ):
        global whisper_transcribe_model, vector_store
        using_context = False
    
        if input_mode == "audio":
            assert audio_path is not None
            history.append({"role": "user", "content": {"path": audio_path}})
            audio_tokens = extract_speech_token(
                whisper_model, feature_extractor, [audio_path]
            )[0]
            if len(audio_tokens) == 0:
                raise gr.Error("No audio tokens extracted")
            audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
            audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
            user_input = audio_tokens
            system_prompt = "User will provide you with a speech instruction. Do it step by step."
            
            whisper_result = whisper_transcribe_model.transcribe(audio_path)
            transcribed_text = whisper_result['text']
            context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
        else:
            assert input_text is not None
            history.append({"role": "user", "content": input_text})
            user_input = input_text
            system_prompt = "User will provide you with a text instruction. Do it step by step."
            context = query_vector_store(vector_store, input_text, 4, 0.7)
            
        if context is not None:
            using_context = True
    
        inputs = previous_input_tokens + previous_completion_tokens
        inputs = inputs.strip()
        if "<|system|>" not in inputs:
            inputs += f"<|system|>\n{system_prompt}"
        if ("<|context|>" not in inputs) and (using_context == True):
            inputs += f"<|context|> According to the following content: {context}, Please answer the question"
        if "<|context|>" not in inputs and context is not None:
            inputs += f"<|context|>\n{context}"
        inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"

        with torch.no_grad():
            text_tokens, audio_tokens = [], []
            audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
            end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
            complete_tokens = []
            prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
            flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
            this_uuid = str(uuid.uuid4())
            tts_speechs = []
            tts_mels = []
            prev_mel = None
            is_finalize = False
            block_size = 10
            
            # Generate tokens using ModelWorker directly instead of API
            for token_id in model_worker.generate_stream_gate({
                "prompt": inputs,
                "temperature": temperature,
                "top_p": top_p,
                "max_new_tokens": max_new_token,
            }):
                if isinstance(token_id, str):  # Error case
                    yield history, inputs, '', token_id, None, None
                    return
                    
                if token_id == end_token_id:
                    is_finalize = True
                if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
                    block_size = 20
                    tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)

                    if prev_mel is not None:
                        prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)

                    tts_speech, tts_mel = audio_decoder.token2wav(
                        tts_token, 
                        uuid=this_uuid,
                        prompt_token=flow_prompt_speech_token.to(device),
                        prompt_feat=prompt_speech_feat.to(device),
                        finalize=is_finalize
                    )
                    prev_mel = tts_mel

                    tts_speechs.append(tts_speech.squeeze())
                    tts_mels.append(tts_mel)
                    yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
                    flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
                    audio_tokens = []
                    
                if not is_finalize:
                    complete_tokens.append(token_id)
                    if token_id >= audio_offset:
                        audio_tokens.append(token_id - audio_offset)
                    else:
                        text_tokens.append(token_id)
        
        # Generate final audio and save
        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
        complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
        
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
            torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
            
        history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
        history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
        yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())

    def update_input_interface(input_mode):
        if input_mode == "audio":
            return [gr.update(visible=True), gr.update(visible=False)]
        else:
            return [gr.update(visible=False), gr.update(visible=True)]

    # Create Gradio interface with new layout
    with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
        with gr.Row():
            # Left column for chat interface
            with gr.Column(scale=2):
                gr.Markdown("## Chat Interface")
                
                with gr.Row():
                    temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1)
                    top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1)
                    max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1)

                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    bubble_full_width=False,
                    type="messages",
                    scale=1,
                    height=500
                )

                with gr.Row():
                    input_mode = gr.Radio(
                        ["audio", "text"],
                        label="Input Mode",
                        value="audio"
                    )
                    
                with gr.Row():
                    audio = gr.Audio(
                        label="Input audio",
                        type='filepath',
                        show_download_button=True,
                        visible=True
                    )
                    text_input = gr.Textbox(
                        label="Input text",
                        placeholder="Enter your text here...",
                        lines=2,
                        visible=False
                    )

                with gr.Row():
                    submit_btn = gr.Button("Submit", variant="primary")
                    reset_btn = gr.Button("Clear")

                output_audio = gr.Audio(
                    label="Play",
                    streaming=True,
                    autoplay=True,
                    show_download_button=False
                )
                complete_audio = gr.Audio(
                    label="Last Output Audio (If Any)",
                    show_download_button=True
                )

            # Right column for database management
            with gr.Column(scale=1):
                gr.Markdown("## Database Management")
                
                file_upload = gr.Files(
                    label="Upload Database Files",
                    file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"],
                    file_count="multiple"
                )
                
                reinit_btn = gr.Button("Reinitialize Database", variant="secondary")
                status_text = gr.Textbox(label="Status", interactive=False)

        history_state = gr.State([])

        # Setup interaction handlers
        respond = submit_btn.click(
            inference_fn,
            inputs=[
                temperature,
                top_p,
                max_new_token,
                input_mode,
                audio,
                text_input,
                history_state,
            ],
            outputs=[
                history_state,
                output_audio,
                complete_audio
            ]
        )

        respond.then(lambda s: s, [history_state], chatbot)

        reset_btn.click(
            clear_fn,
            outputs=[
                chatbot,
                history_state,
                output_audio,
                complete_audio
            ]
        )
        
        input_mode.change(
            update_input_interface,
            inputs=[input_mode],
            outputs=[audio, text_input]
        )

        # Database reinitialization handler
        reinit_btn.click(
            reinitialize_database,
            inputs=[file_upload],
            outputs=[status_text]
        )

    # Initialize models and launch interface
    initialize_fn()
    demo.launch(
        server_port=args.port,
        server_name=args.host,
        share=args.share
    )