import os import gradio as gr from PIL import Image import numpy as np import cv2 import matplotlib.pyplot as plt import io # Fonctions de traitement d'image def load_image(image): return image def apply_negative(image): img_np = np.array(image) negative = 255 - img_np return Image.fromarray(negative) def grayscale(image): return image.convert('L') def binarize_image(image, threshold): img_np = np.array(image.convert('L')) _, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY) return Image.fromarray(binary) def resize_image(image, width, height): width = int(width) height = int(height) return image.resize((width, height)) def rotate_image(image, angle): return image.rotate(angle) def show_histogram(image): image_gray = image.convert("L") # Obtenir les données de l'image en niveaux de gris image_array = np.array(image_gray) # Calculer l'histogramme hist, bins = np.histogram(image_array.flatten(), bins=256, range=[0,256]) # Créer une figure pour l'affichage de l'histogramme fig, ax = plt.subplots() ax.plot(hist, color='blue') ax.set_xlim([0, 256]) ax.set_title('Histogram of Image') # Enregistrer l'histogramme dans un buffer buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) # Ouvrir l'image du buffer en utilisant PIL hist_image = Image.open(buf) return hist_image def gaussian_filter(image, shape=(3, 3)): image = np.array(image) filtered = cv2.GaussianBlur(image, shape, 0) return Image.fromarray(filtered) def mean_filter(image, shape=(3, 3)): image = np.array(image) filtered = cv2.blur(image, shape) return Image.fromarray(filtered) def sobel_edges(image, k=5): k = int(k) image = np.array(image.convert('L')) sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k) sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k) sobel_combined = cv2.magnitude(sobel_x, sobel_y) return Image.fromarray(np.uint8(sobel_combined)) def erosion(image, iterations=3, shape=(5, 5)): iterations = int(iterations) image = np.array(image.convert("L")) kernel = np.ones(shape, np.uint8) eroded_image = cv2.erode(image, kernel, iterations=iterations) return Image.fromarray(eroded_image) def dilatation(image, iterations=3, shape=(5, 5)): iterations = int(iterations) image = np.array(image.convert("L")) kernel = np.ones(shape, np.uint8) dilated_image = cv2.dilate(image, kernel, iterations=iterations) return Image.fromarray(dilated_image) # Interface Gradio def image_processing(image, operation, modified_image, threshold=128, width=100, height=100, angle=30, k=5, iterations=3): current_image = modified_image if modified_image is not None else image if operation == "Négatif": current_image = apply_negative(image) elif operation == "Image en Gris": current_image = grayscale(image) elif operation == "Binarisation": current_image = binarize_image(image, threshold) elif operation == "Redimensionner": current_image = resize_image(image, width, height) elif operation == "Rotation": current_image = rotate_image(image, angle) elif operation == 'Filtre Gaussien': current_image = gaussian_filter(image) elif operation == 'Filtre Moyen': current_image = mean_filter(image) elif operation == 'Sobel Edges Extraction': current_image = sobel_edges(image, k) elif operation == 'Erosion': current_image = erosion(image, iterations) elif operation == 'Dilatation': current_image = dilatation(image, iterations) return current_image, show_histogram(current_image) # Interface Gradio with gr.Blocks() as demo: gr.Markdown("## Traitement d'Images") with gr.Row(): operation = gr.Radio(["Négatif", "Image en Gris", "Binarisation", "Redimensionner", "Rotation", 'Filtre Gaussien', 'Filtre Moyen', 'Sobel Edges Extraction', 'Erosion', 'Dilatation'], label="Opération", value="Négatif") with gr.Row(): threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False) width = gr.Number(value=100, label="Largeur", visible=False) height = gr.Number(value=100, label="Hauteur", visible=False) angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=False) k = gr.Number(value=5, label="k de Sobel", visible=False) iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=False) def update_ui(operation): # Mise à jour dynamique de la visibilité des champs return { threshold: gr.update(visible=operation == "Binarisation"), width: gr.update(visible=operation == "Redimensionner"), height: gr.update(visible=operation == "Redimensionner"), angle: gr.update(visible=operation == "Rotation"), k: gr.update(visible=operation == "Sobel Edges Extraction"), iterations: gr.update(visible=operation in ["Erosion", "Dilatation"]) } operation.change(update_ui, operation, [threshold, width, height, angle, k, iterations]) with gr.Row(): image_input = gr.Image(type="pil", label="Charger Image", scale=2) original_hist = gr.Image(label="Histogramme de l'Image Originale", scale=1) with gr.Row(): image_output = gr.Image(type="pil", label="Image Modifiée", interactive=False) modified_hist = gr.Image(label="Histogramme de l'Image Modifiée", scale=1) # Afficher l'histogramme de l'image d'entrée def s_hist(image): return show_histogram(image) image_input.change(s_hist, inputs=image_input, outputs=original_hist) submit_button = gr.Button("Appliquer") submit_button.click(image_processing, inputs=[image_input, operation, image_output, threshold, width, height, angle, k, iterations], outputs=[image_output, modified_hist]) # Lancer l'application Gradio demo.launch()