Voice / app.py
Staticaliza's picture
Update app.py
bf80208 verified
raw
history blame
10.2 kB
# Imports
import gradio as gr
import spaces
import re
import torch
import torchaudio
import numpy as np
import tempfile
import click
import soundfile as sf
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (load_checkpoint, get_tokenizer, convert_char_to_pinyin, save_spectrogram)
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
ode_method = "euler"
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length),
odeint_kwargs=dict(method=ode_method),
vocab_char_map=vocab_char_map,
).to(DEVICE)
model = load_checkpoint(model, ckpt_path, DEVICE, use_ema = True)
return model
# Variables
DEFAULT_MODEL = "F5"
DEFAULT_REMOVE_SILENCES = True
DEFAULT_SPEED = 1
DEFAULT_CROSS_FADE = 0.15
target_rms = 0.1
nfe_step = 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
input_silence_offset = 14
input_silence_min_len = 500
silence_offset = 14
silence_min_len = 200
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Functions
@spaces.GPU(duration=30)
def infer_batch(input_batches, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
if model_choice == "F5":
ema_model = F5TTS_ema_model
elif model_choice == "E2":
ema_model = E2TTS_ema_model
audio, sr = reference_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(DEVICE)
generated_waves = []
if len(reference_input[-1].encode('utf-8')) == 1:
reference_input = reference_input + " "
for i, input in enumerate(input_batches):
text_list = [reference_input + input]
final_text_list = convert_char_to_pinyin(text_list)
reference_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
reference_input_len = len(reference_input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, reference_input))
input_len = len(input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, input))
duration = reference_audio_len + int(reference_audio_len / reference_input_len * input_len / speed)
# Inference
with torch.inference_mode():
generated, _ = ema_model.sample(cond=audio, text=final_text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef)
generated = generated[:, reference_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
# Handle combining generated waves with cross-fading
if cross_fade <= 0:
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
cross_fade_samples = int(cross_fade * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
final_wave = np.concatenate([prev_wave, next_wave])
continue
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
new_wave = np.concatenate([prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]])
final_wave = new_wave
# Handle removing silences
if remove_silences:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, target_sample_rate)
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=silence_min_len, silence_thresh=aseg.dBFS - silence_offset, keep_silence=250)
non_silent_wave = AudioSegment.empty()
for seg in non_silent_segs:
non_silent_wave += seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
return (target_sample_rate, final_wave)
@spaces.GPU(duration=30)
def infer(input, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(reference_audio)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=input_silence_min_len, silence_thresh=aseg.dBFS - input_silence_offset, keep_silence=250)
non_silent_wave = AudioSegment.empty()
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
# Ensure it ends with period.
if not reference_input.endswith(". "):
if reference_input.endswith("."):
reference_input += " "
else:
reference_input += ". "
audio, sr = torchaudio.load(ref_audio)
# Split input into chunks
max_chars = int(len(reference_input.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
input_batches = chunk_text(input, max_chars=max_chars)
print("--------------------------------------------- INPUT")
print(f"Input: {input}")
print(f"Reference Input: {reference_input}")
print(f"Batch Inputs:")
for i, batch_text in enumerate(input_batches):
print(f" {i}: ", batch_text)
print("---------------------------------------------------")
return infer_batch(input_batches, (audio, sr), reference_input, model_choice, remove_silences, speed, cross_fade)
def chunk_text(text, max_chars=135):
chunks = []
current_chunk = ""
# Split input into sentences with punctuations
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
for sentence in sentences:
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
print("-------------------------------------------- CHUNKS")
print(chunks)
print("---------------------------------------------------")
return chunks
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Speak text to audio.")
with gr.Column():
input = gr.Textbox(lines=1, value="", label="Input")
reference_audio = gr.Audio(sources="upload", type="filepath", label="Reference Audio")
reference_input = gr.Textbox(lines=1, value="", label="Reference Text")
model_choice = gr.Radio(["F5", "E2"], label="TTS Model", value=DEFAULT_MODEL)
remove_silences = gr.Checkbox(value=DEFAULT_REMOVE_SILENCES, label="Remove Silences")
speed = gr.Slider(minimum=0.3, maximum=2.0, value=DEFAULT_SPEED, step=0.1, label="Speed")
cross_fade = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_CROSS_FADE, step=0.01, label="Audio Cross-Fade Duration Between Sentences")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Audio(label="Output")
submit.click(infer, inputs=[input, reference_audio, reference_input, model_choice, remove_silences, speed, cross_fade], outputs=output, queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True)