Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,195 Bytes
130e301 fcf7ece 130e301 fcf7ece 130e301 fcf7ece 130e301 fcf7ece bf80208 e503dc6 130e301 e559a2a fcf7ece 130e301 fcf7ece bf80208 fcf7ece 130e301 fcf7ece 772f068 e503dc6 772f068 6c1b4fd e503dc6 130e301 162b5de e503dc6 fcf7ece e503dc6 fcf7ece e503dc6 fcf7ece e503dc6 130e301 fcf7ece e503dc6 67e8e08 e503dc6 fcf7ece e503dc6 fcf7ece e503dc6 fcf7ece e503dc6 fcf7ece e559a2a fcf7ece e503dc6 fcf7ece e559a2a fcf7ece e559a2a fcf7ece e559a2a fcf7ece e559a2a fcf7ece e559a2a fcf7ece bf80208 fcf7ece 3b2e69c fcf7ece 130e301 e559a2a fcf7ece e503dc6 bf80208 e559a2a bf80208 fcf7ece bf80208 fcf7ece bf80208 fcf7ece bf80208 fcf7ece bf80208 fcf7ece e559a2a fcf7ece e559a2a fcf7ece e559a2a e503dc6 e559a2a 162b5de e559a2a 162b5de e559a2a e503dc6 162b5de fcf7ece e559a2a fcf7ece e503dc6 e559a2a e503dc6 162b5de e559a2a e503dc6 fcf7ece 6c1b4fd e503dc6 e559a2a e503dc6 e559a2a e503dc6 8202ce8 e503dc6 8202ce8 e503dc6 fcf7ece 6c1b4fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Imports
import gradio as gr
import spaces
import re
import torch
import torchaudio
import numpy as np
import tempfile
import click
import soundfile as sf
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (load_checkpoint, get_tokenizer, convert_char_to_pinyin, save_spectrogram)
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
ode_method = "euler"
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length),
odeint_kwargs=dict(method=ode_method),
vocab_char_map=vocab_char_map,
).to(DEVICE)
model = load_checkpoint(model, ckpt_path, DEVICE, use_ema = True)
return model
# Variables
DEFAULT_MODEL = "F5"
DEFAULT_REMOVE_SILENCES = True
DEFAULT_SPEED = 1
DEFAULT_CROSS_FADE = 0.15
target_rms = 0.1
nfe_step = 32
cfg_strength = 2.0
sway_sampling_coef = -1.0
input_silence_offset = 14
input_silence_min_len = 500
silence_offset = 14
silence_min_len = 200
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Functions
@spaces.GPU(duration=30)
def infer_batch(input_batches, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
if model_choice == "F5":
ema_model = F5TTS_ema_model
elif model_choice == "E2":
ema_model = E2TTS_ema_model
audio, sr = reference_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(DEVICE)
generated_waves = []
if len(reference_input[-1].encode('utf-8')) == 1:
reference_input = reference_input + " "
for i, input in enumerate(input_batches):
text_list = [reference_input + input]
final_text_list = convert_char_to_pinyin(text_list)
reference_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
reference_input_len = len(reference_input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, reference_input))
input_len = len(input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, input))
duration = reference_audio_len + int(reference_audio_len / reference_input_len * input_len / speed)
# Inference
with torch.inference_mode():
generated, _ = ema_model.sample(cond=audio, text=final_text_list, duration=duration, steps=nfe_step, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef)
generated = generated[:, reference_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
# Handle combining generated waves with cross-fading
if cross_fade <= 0:
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
cross_fade_samples = int(cross_fade * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
final_wave = np.concatenate([prev_wave, next_wave])
continue
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
new_wave = np.concatenate([prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]])
final_wave = new_wave
# Handle removing silences
if remove_silences:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, target_sample_rate)
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=silence_min_len, silence_thresh=aseg.dBFS - silence_offset, keep_silence=250)
non_silent_wave = AudioSegment.empty()
for seg in non_silent_segs:
non_silent_wave += seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
return (target_sample_rate, final_wave)
@spaces.GPU(duration=30)
def infer(input, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(reference_audio)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=input_silence_min_len, silence_thresh=aseg.dBFS - input_silence_offset, keep_silence=250)
non_silent_wave = AudioSegment.empty()
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
# Ensure it ends with period.
if not reference_input.endswith(". "):
if reference_input.endswith("."):
reference_input += " "
else:
reference_input += ". "
audio, sr = torchaudio.load(ref_audio)
# Split input into chunks
max_chars = int(len(reference_input.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
input_batches = chunk_text(input, max_chars=max_chars)
print("--------------------------------------------- INPUT")
print(f"Input: {input}")
print(f"Reference Input: {reference_input}")
print(f"Batch Inputs:")
for i, batch_text in enumerate(input_batches):
print(f" {i}: ", batch_text)
print("---------------------------------------------------")
return infer_batch(input_batches, (audio, sr), reference_input, model_choice, remove_silences, speed, cross_fade)
def chunk_text(text, max_chars=135):
chunks = []
current_chunk = ""
# Split input into sentences with punctuations
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
for sentence in sentences:
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
print("-------------------------------------------- CHUNKS")
print(chunks)
print("---------------------------------------------------")
return chunks
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Speak text to audio.")
with gr.Column():
input = gr.Textbox(lines=1, value="", label="Input")
reference_audio = gr.Audio(sources="upload", type="filepath", label="Reference Audio")
reference_input = gr.Textbox(lines=1, value="", label="Reference Text")
model_choice = gr.Radio(["F5", "E2"], label="TTS Model", value=DEFAULT_MODEL)
remove_silences = gr.Checkbox(value=DEFAULT_REMOVE_SILENCES, label="Remove Silences")
speed = gr.Slider(minimum=0.3, maximum=2.0, value=DEFAULT_SPEED, step=0.1, label="Speed")
cross_fade = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_CROSS_FADE, step=0.01, label="Audio Cross-Fade Duration Between Sentences")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Audio(label="Output")
submit.click(infer, inputs=[input, reference_audio, reference_input, model_choice, remove_silences, speed, cross_fade], outputs=output, queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True) |