import streamlit as st # from streamlit_extras.add_vertical_space import add_vertical_space import os import pickle from PyPDF2 import PdfReader from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader, PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI,AzureOpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback # Sidebar contents with st.sidebar: st.title('🤗💬 LLM Chat App') st.markdown(''' ## About This app is an LLM-powered chatbot built using: - [Streamlit](https://streamlit.io/) - [LangChain](https://python.langchain.com/) - [OpenAI](https://platform.openai.com/docs/models) LLM model ''') # add_vertical_space(5) st.write('Made by Nick') def main(): st.header("智能点餐机器人 💬") # # embeddings store_name = "coffee" if os.path.exists(f"{store_name}.pkl"): with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) st.write('Embeddings Loaded from the Disk') else: st.write('Reading from prompt ...') loader = PyPDFLoader("./咖啡语料.pdf") data = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=512, chunk_overlap=128, length_function=len ) texts = text_splitter.split_documents(data) embeddings = OpenAIEmbeddings(chunk_size = 1) VectorStore = FAISS.from_texts([t.page_content for t in texts], embedding=embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) query = st.text_input("Ask questions about Starbucks coffee:") if query: docs = VectorStore.similarity_search(query=query, k=3) llm = AzureOpenAI( engine="text-davinci-003", model_name="text-davinci-003", ) chain = load_qa_chain(llm=llm, chain_type="stuff") with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) print(cb) st.write(response) if __name__ == '__main__': main()