import os import re from copy import copy, deepcopy from csv import reader from datetime import timedelta import logging import openai class SRT_segment(object): def __init__(self, *args) -> None: if isinstance(args[0], dict): segment = args[0] self.start = segment['start'] self.end = segment['end'] self.start_ms = int((segment['start'] * 100) % 100 * 10) self.end_ms = int((segment['end'] * 100) % 100 * 10) if self.start_ms == self.end_ms and int(segment['start']) == int(segment['end']): # avoid empty time stamp self.end_ms += 500 self.start_time = timedelta(seconds=int(segment['start']), milliseconds=self.start_ms) self.end_time = timedelta(seconds=int(segment['end']), milliseconds=self.end_ms) if self.start_ms == 0: self.start_time_str = str(0) + str(self.start_time).split('.')[0] + ',000' else: self.start_time_str = str(0) + str(self.start_time).split('.')[0] + ',' + \ str(self.start_time).split('.')[1][:3] if self.end_ms == 0: self.end_time_str = str(0) + str(self.end_time).split('.')[0] + ',000' else: self.end_time_str = str(0) + str(self.end_time).split('.')[0] + ',' + str(self.end_time).split('.')[1][ :3] self.source_text = segment['text'].lstrip() self.duration = f"{self.start_time_str} --> {self.end_time_str}" self.translation = "" elif isinstance(args[0], list): self.source_text = args[0][2] self.duration = args[0][1] self.start_time_str = self.duration.split(" --> ")[0] self.end_time_str = self.duration.split(" --> ")[1] # parse the time to float self.start_ms = int(self.start_time_str.split(',')[1]) / 10 self.end_ms = int(self.end_time_str.split(',')[1]) / 10 start_list = self.start_time_str.split(',')[0].split(':') self.start = int(start_list[0]) * 3600 + int(start_list[1]) * 60 + int(start_list[2]) + self.start_ms / 100 end_list = self.end_time_str.split(',')[0].split(':') self.end = int(end_list[0]) * 3600 + int(end_list[1]) * 60 + int(end_list[2]) + self.end_ms / 100 self.translation = "" def merge_seg(self, seg): """ Merge the segment seg with the current segment in place. :param seg: Another segment that is strictly next to current one. :return: None """ # assert seg.start_ms == self.end_ms, f"cannot merge discontinuous segments." self.source_text += f' {seg.source_text}' self.translation += f' {seg.translation}' self.end_time_str = seg.end_time_str self.end = seg.end self.end_ms = seg.end_ms self.duration = f"{self.start_time_str} --> {self.end_time_str}" pass def __add__(self, other): """ Merge the segment seg with the current segment, and return the new constructed segment. No in-place modification. :param other: Another segment that is strictly next to added segment. :return: new segment of the two sub-segments """ result = deepcopy(self) result.source_text += f' {other.source_text}' result.translation += f' {other.translation}' result.end_time_str = other.end_time_str result.end = other.end result.end_ms = other.end_ms result.duration = f"{self.start_time_str} --> {self.end_time_str}" return result def remove_trans_punc(self): """ remove punctuations in translation text :return: None """ punc_cn = ",。!?" translator = str.maketrans(punc_cn, ' ' * len(punc_cn)) self.translation = self.translation.translate(translator) def __str__(self) -> str: return f'{self.duration}\n{self.source_text}\n\n' def get_trans_str(self) -> str: return f'{self.duration}\n{self.translation}\n\n' def get_bilingual_str(self) -> str: return f'{self.duration}\n{self.source_text}\n{self.translation}\n\n' class SRT_script(): def __init__(self, segments) -> None: self.segments = [] for seg in segments: srt_seg = SRT_segment(seg) self.segments.append(srt_seg) @classmethod def parse_from_srt_file(cls, path: str): with open(path, 'r', encoding="utf-8") as f: script_lines = [line.rstrip() for line in f.readlines()] segments = [] for i in range(len(script_lines)): if i % 4 == 0: segments.append(list(script_lines[i:i + 4])) return cls(segments) def merge_segs(self, idx_list) -> SRT_segment: """ Merge entire segment list to a single segment :param idx_list: List of index to merge :return: Merged list """ if not idx_list: raise NotImplementedError('Empty idx_list') seg_result = deepcopy(self.segments[idx_list[0]]) if len(idx_list) == 1: return seg_result for idx in range(1, len(idx_list)): seg_result += self.segments[idx_list[idx]] return seg_result def form_whole_sentence(self): """ Concatenate or Strip sentences and reconstruct segments list. This is because of improper segmentation from openai-whisper. :return: None """ logging.info("Forming whole sentences...") merge_list = [] # a list of indices that should be merged e.g. [[0], [1, 2, 3, 4], [5, 6], [7]] sentence = [] for i, seg in enumerate(self.segments): if seg.source_text[-1] in ['.', '!', '?'] and len(seg.source_text) > 10 and 'vs.' not in seg.source_text: sentence.append(i) merge_list.append(sentence) sentence = [] else: sentence.append(i) segments = [] for idx_list in merge_list: if len(idx_list) > 1: logging.info("merging segments: %s", idx_list) segments.append(self.merge_segs(idx_list)) self.segments = segments def remove_trans_punctuation(self): """ Post-process: remove all punc after translation and split :return: None """ for i, seg in enumerate(self.segments): seg.remove_trans_punc() logging.info("Removed punctuation in translation.") def set_translation(self, translate: str, id_range: tuple, model, video_name, video_link=None): start_seg_id = id_range[0] end_seg_id = id_range[1] src_text = "" for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]): src_text += seg.source_text src_text += '\n\n' def inner_func(target, input_str): response = openai.ChatCompletion.create( # model=model, model="gpt-3.5-turbo", messages=[ # {"role": "system", "content": "You are a helpful assistant that help calibrates English to Chinese subtitle translations in starcraft2."}, # {"role": "system", "content": "You are provided with a translated Chinese transcript; you must modify or split the Chinese sentence to match the meaning and the number of the English transcript exactly one by one. You must not merge ANY Chinese lines, you can only split them but the total Chinese lines MUST equals to number of English lines."}, # {"role": "system", "content": "There is no need for you to add any comments or notes, and do not modify the English transcript."}, # {"role": "user", "content": 'You are given the English transcript and line number, your task is to merge or split the Chinese to match the exact number of lines in English transcript, no more no less. For example, if there are more Chinese lines than English lines, merge some the Chinese lines to match the number of English lines. If Chinese lines is less than English lines, split some Chinese lines to match the english lines: "{}"'.format(input_str)} {"role": "system", "content": "你的任务是按照要求合并或拆分句子到指定行数,你需要尽可能保证句意,但必要时可以将一句话分为两行输出"}, {"role": "system", "content": "注意:你只需要输出处理过的中文句子,如果你要输出序号,请使用冒号隔开"}, {"role": "user", "content": '请将下面的句子拆分或组合为{}句:\n{}'.format(target, input_str)} # {"role": "system", "content": "请将以下中文与其英文句子一一对应并输出:"}, # {"role": "system", "content": "英文:{}".format(src_text)}, # {"role": "user", "content": "中文:{}\n\n".format(input_str)}, ], temperature=0.15 ) # print(src_text) # print(input_str) # print(response['choices'][0]['message']['content'].strip()) # exit() return response['choices'][0]['message']['content'].strip() lines = translate.split('\n\n') if len(lines) < (end_seg_id - start_seg_id + 1): count = 0 solved = True while count < 5 and len(lines) != (end_seg_id - start_seg_id + 1): count += 1 print("Solving Unmatched Lines|iteration {}".format(count)) # input_str = "\n" # initialize GPT input # for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id]): # input_str += 'Sentence %d: ' %(i+1)+ seg.source_text + '\n' # #Append to prompt string # #Adds sentence index let GPT keep track of sentence breaks # input_str += translate # append translate to prompt flag = True while flag: flag = False # print("translate:") # print(translate) try: # print("target") # print(end_seg_id - start_seg_id + 1) translate = inner_func(end_seg_id - start_seg_id + 1, translate) except Exception as e: print("An error has occurred during solving unmatched lines:", e) print("Retrying...") flag = True lines = translate.split('\n') # print("result") # print(len(lines)) if len(lines) < (end_seg_id - start_seg_id + 1): solved = False print("Failed Solving unmatched lines, Manually parse needed") if not os.path.exists("./logs"): os.mkdir("./logs") if video_link: log_file = "./logs/log_link.csv" log_exist = os.path.exists(log_file) with open(log_file, "a") as log: if not log_exist: log.write("range_of_text,iterations_solving,solved,file_length,video_link" + "\n") log.write(str(id_range) + ',' + str(count) + ',' + str(solved) + ',' + str( len(self.segments)) + ',' + video_link + "\n") else: log_file = "./logs/log_name.csv" log_exist = os.path.exists(log_file) with open(log_file, "a") as log: if not log_exist: log.write("range_of_text,iterations_solving,solved,file_length,video_name" + "\n") log.write(str(id_range) + ',' + str(count) + ',' + str(solved) + ',' + str( len(self.segments)) + ',' + video_name + "\n") print(lines) # print(id_range) # for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id]): # print(seg.source_text) # print(translate) for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]): # naive way to due with merge translation problem # TODO: need a smarter solution if i < len(lines): if "Note:" in lines[i]: # to avoid note lines.remove(lines[i]) max_num -= 1 if i == len(lines) - 1: break try: seg.translation = lines[i].split(":" or ":" or ".")[1] except: seg.translation = lines[i] def split_seg(self, seg, text_threshold, time_threshold): # evenly split seg to 2 parts and add new seg into self.segments # ignore the initial comma to solve the recursion problem if len(seg.source_text) > 2: if seg.source_text[:2] == ', ': seg.source_text = seg.source_text[2:] if seg.translation[0] == ',': seg.translation = seg.translation[1:] source_text = seg.source_text translation = seg.translation # split the text based on commas src_commas = [m.start() for m in re.finditer(',', source_text)] trans_commas = [m.start() for m in re.finditer(',', translation)] if len(src_commas) != 0: src_split_idx = src_commas[len(src_commas) // 2] if len(src_commas) % 2 == 1 else src_commas[ len(src_commas) // 2 - 1] else: src_space = [m.start() for m in re.finditer(' ', source_text)] if len(src_space) > 0: src_split_idx = src_space[len(src_space) // 2] if len(src_space) % 2 == 1 else src_space[ len(src_space) // 2 - 1] else: src_split_idx = 0 if len(trans_commas) != 0: trans_split_idx = trans_commas[len(trans_commas) // 2] if len(trans_commas) % 2 == 1 else trans_commas[ len(trans_commas) // 2 - 1] else: trans_split_idx = len(translation) // 2 # split the time duration based on text length time_split_ratio = trans_split_idx / (len(seg.translation) - 1) src_seg1 = source_text[:src_split_idx] src_seg2 = source_text[src_split_idx:] trans_seg1 = translation[:trans_split_idx] trans_seg2 = translation[trans_split_idx:] start_seg1 = seg.start end_seg1 = start_seg2 = seg.start + (seg.end - seg.start) * time_split_ratio end_seg2 = seg.end seg1_dict = {} seg1_dict['text'] = src_seg1 seg1_dict['start'] = start_seg1 seg1_dict['end'] = end_seg1 seg1 = SRT_segment(seg1_dict) seg1.translation = trans_seg1 seg2_dict = {} seg2_dict['text'] = src_seg2 seg2_dict['start'] = start_seg2 seg2_dict['end'] = end_seg2 seg2 = SRT_segment(seg2_dict) seg2.translation = trans_seg2 result_list = [] if len(seg1.translation) > text_threshold and (seg1.end - seg1.start) > time_threshold: result_list += self.split_seg(seg1, text_threshold, time_threshold) else: result_list.append(seg1) if len(seg2.translation) > text_threshold and (seg2.end - seg2.start) > time_threshold: result_list += self.split_seg(seg2, text_threshold, time_threshold) else: result_list.append(seg2) return result_list def check_len_and_split(self, text_threshold=30, time_threshold=1.0): # if sentence length >= threshold and sentence duration > time_threshold, split this segments to two logging.info("performing check_len_and_split") segments = [] for i, seg in enumerate(self.segments): if len(seg.translation) > text_threshold and (seg.end - seg.start) > time_threshold: seg_list = self.split_seg(seg, text_threshold, time_threshold) logging.info("splitting segment {} in to {} parts".format(i+1, len(seg_list))) segments += seg_list else: segments.append(seg) self.segments = segments logging.info("check_len_and_split finished") pass def check_len_and_split_range(self, range, text_threshold=30, time_threshold=1.0): # DEPRECATED # if sentence length >= text_threshold, split this segments to two start_seg_id = range[0] end_seg_id = range[1] extra_len = 0 segments = [] for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]): if len(seg.translation) > text_threshold and (seg.end - seg.start) > time_threshold: seg_list = self.split_seg(seg, text_threshold, time_threshold) segments += seg_list extra_len += len(seg_list) - 1 else: segments.append(seg) self.segments[start_seg_id - 1:end_seg_id] = segments return extra_len def correct_with_force_term(self): ## force term correction logging.info("performing force term correction") # load term dictionary with open("./finetune_data/dict_enzh.csv", 'r', encoding='utf-8') as f: term_enzh_dict = {rows[0]: rows[1] for rows in reader(f)} keywords = list(term_enzh_dict.keys()) keywords.sort(key=lambda x: len(x), reverse=True) for word in keywords: for i, seg in enumerate(self.segments): if word in seg.source_text.lower(): seg.source_text = re.sub(fr"({word}es|{word}s?)\b", "{}".format(term_enzh_dict.get(word)), seg.source_text, flags=re.IGNORECASE) logging.info("replace term: " + word + " --> " + term_enzh_dict.get(word) + " in time stamp {}".format(i+1)) logging.info("source text becomes: " + seg.source_text) def spell_check_term(self): ## known bug: I've will be replaced because i've is not in the dict logging.info("performing spell check") import enchant dict = enchant.Dict('en_US') term_spellDict = enchant.PyPWL('./finetune_data/dict_freq.txt') for seg in self.segments: ready_words = seg.source_text.split(" ") for i in range(len(ready_words)): word = ready_words[i] [real_word, pos] = self.get_real_word(word) if not dict.check(word[:pos]) and not term_spellDict.check(real_word): suggest = term_spellDict.suggest(real_word) if suggest and enchant.utils.levenshtein(real_word, suggest[0]) < (len(real_word)+len(suggest[0]))/4: # relax spell check # with open("dislog.log","a") as log: # if not os.path.exists("dislog.log"): # log.write("word \t suggest \t levenshtein \n") logging.info(real_word + "\t" + suggest[0] + "\t" + str(enchant.utils.levenshtein(real_word, suggest[0]))+'\n') #print(word + ":" + suggest[0] + ":---:levenshtein:" + str(enchant.utils.levenshtein(word, suggest[0]))) new_word = word.replace(word[:pos],suggest[0]) else: new_word = word else: new_word = word ready_words[i] = new_word seg.source_text = " ".join(ready_words) pass def spell_correction(self, word: str, arg: int): try: arg in [0, 1] except ValueError: print('only 0 or 1 for argument') def uncover(word: str): if word[-2:] == ".\n": real_word = word[:-2].lower() n = -2 elif word[-1:] in [".", "\n", ",", "!", "?"]: real_word = word[:-1].lower() n = -1 else: real_word = word.lower() n = 0 return real_word, len(word) + n real_word = uncover(word)[0] pos = uncover(word)[1] new_word = word if arg == 0: # term translate mode with open("finetune_data/dict_enzh.csv", 'r', encoding='utf-8') as f: term_enzh_dict = {rows[0]: rows[1] for rows in reader(f)} if real_word in term_enzh_dict: new_word = word.replace(word[:pos], term_enzh_dict.get(real_word)) elif arg == 1: # term spell check mode import enchant dict = enchant.Dict('en_US') term_spellDict = enchant.PyPWL('./finetune_data/dict_freq.txt') if not dict.check(real_word): if term_spellDict.suggest(real_word): # relax spell check new_word = word.replace(word[:pos], term_spellDict.suggest(real_word)[0]) return new_word def get_real_word(self, word: str): if word[-2:] == ".\n": real_word = word[:-2].lower() n = -2 elif word[-1:] in [".", "\n", ",", "!", "?"]: real_word = word[:-1].lower() n = -1 else: real_word = word.lower() n = 0 return real_word, len(word) + n ## WRITE AND READ FUNCTIONS ## def get_source_only(self): # return a string with pure source text result = "" for i, seg in enumerate(self.segments): result+=f'{seg.source_text}\n\n\n'#f'SENTENCE {i+1}: {seg.source_text}\n\n\n' return result def reform_src_str(self): result = "" for i, seg in enumerate(self.segments): result += f'{i + 1}\n' result += str(seg) return result def reform_trans_str(self): result = "" for i, seg in enumerate(self.segments): result += f'{i + 1}\n' result += seg.get_trans_str() return result def form_bilingual_str(self): result = "" for i, seg in enumerate(self.segments): result += f'{i + 1}\n' result += seg.get_bilingual_str() return result def write_srt_file_src(self, path: str): # write srt file to path with open(path, "w", encoding='utf-8') as f: f.write(self.reform_src_str()) pass def write_srt_file_translate(self, path: str): logging.info("writing to " + path) with open(path, "w", encoding='utf-8') as f: f.write(self.reform_trans_str()) pass def write_srt_file_bilingual(self, path: str): logging.info("writing to " + path) with open(path, "w", encoding='utf-8') as f: f.write(self.form_bilingual_str()) pass def realtime_write_srt(self, path, range, length, idx): # DEPRECATED start_seg_id = range[0] end_seg_id = range[1] with open(path, "a", encoding='utf-8') as f: # for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id+length]): # f.write(f'{i+idx}\n') # f.write(seg.get_trans_str()) for i, seg in enumerate(self.segments): if i < range[0] - 1: continue if i >= range[1] + length: break f.write(f'{i + idx}\n') f.write(seg.get_trans_str()) pass def realtime_bilingual_write_srt(self, path, range, length, idx): # DEPRECATED start_seg_id = range[0] end_seg_id = range[1] with open(path, "a", encoding='utf-8') as f: for i, seg in enumerate(self.segments): if i < range[0] - 1: continue if i >= range[1] + length: break f.write(f'{i + idx}\n') f.write(seg.get_bilingual_str()) pass