import torch import torchvision from torch import nn def create_transformer_model(num_classes:int=325, # default output classes = 3 (pizza, steak, sushi) seed:int=42): # 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model weights = torchvision.models.ViT_B_16_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.vit_b_16(weights=weights) # 4. Freeze all layers in the base model for param in model.parameters(): param.requires_grad = False # 5. Change classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=768, out_features=num_classes) ) return model, transforms