import torch import torchvision from torch import nn def create_vit_model(num_classes:int=325, seed:int=42): # Create ViT_B_16 pretrained weights, transforms and model weights = torchvision.models.ViT_B_16_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.vit_b_16(weights=weights) # Freeze all of the base layers for param in model.parameters(): param.requires_grad = False # Change classifier head to suit our needs torch.manual_seed(seed) model.heads = nn.Sequential(nn.Linear(in_features=768, out_features=325)) return model, transforms