# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Matches Triangulation Utils # -------------------------------------------------------- import numpy as np import torch # Batched Matches Triangulation def batched_triangulate(pts2d, # [B, Ncams, Npts, 2] proj_mats): # [B, Ncams, 3, 4] I@E projection matrix B, Ncams, Npts, two = pts2d.shape assert two==2 assert proj_mats.shape == (B, Ncams, 3, 4) # P - xP x = proj_mats[...,0,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,0], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] y = proj_mats[...,1,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,1], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] eq = torch.cat([x, y], dim=1).transpose(1, 2) # [B, Npts, 2xNcams, 4] return torch.linalg.lstsq(eq[...,:3], -eq[...,3]).solution def matches_to_depths(intrinsics, # input camera intrinsics [B, Ncams, 3, 3] extrinsics, # input camera extrinsics [B, Ncams, 3, 4] matches, # input correspondences [B, Ncams, Npts, 2] batchsize=16, # bs for batched processing min_num_valids_ratio=.3 # at least this ratio of image pairs need to predict a match for a given pixel of img1 ): B, Nv, H, W, five = matches.shape min_num_valids = np.floor(Nv*min_num_valids_ratio) out_aggregated_points, out_depths, out_confs = [], [], [] for b in range(B//batchsize+1): # batched processing start, stop = b*batchsize,min(B,(b+1)*batchsize) sub_batch=slice(start,stop) sub_batchsize = stop-start if sub_batchsize==0:continue points1, points2, confs = matches[sub_batch, ..., :2], matches[sub_batch, ..., 2:4], matches[sub_batch, ..., -1] allpoints = torch.cat([points1.view([sub_batchsize*Nv,1,H*W,2]), points2.view([sub_batchsize*Nv,1,H*W,2])],dim=1) # [BxNv, 2, HxW, 2] allcam_Ps = intrinsics[sub_batch] @ extrinsics[sub_batch,:,:3,:] cam_Ps1, cam_Ps2 = allcam_Ps[:,[0]].repeat([1,Nv,1,1]), allcam_Ps[:,1:] # [B, Nv, 3, 4] formatted_camPs = torch.cat([cam_Ps1.reshape([sub_batchsize*Nv,1,3,4]), cam_Ps2.reshape([sub_batchsize*Nv,1,3,4])],dim=1) # [BxNv, 2, 3, 4] # Triangulate matches to 3D points_3d_world = batched_triangulate(allpoints, formatted_camPs) # [BxNv, HxW, three] # Aggregate pairwise predictions points_3d_world = points_3d_world.view([sub_batchsize,Nv,H,W,3]) valids = points_3d_world.isfinite() valids_sum = valids.sum(dim=-1) validsuni=valids_sum.unique() assert torch.all(torch.logical_or(validsuni == 0 , validsuni == 3)), "Error, can only be nan for none or all XYZ values, not a subset" confs[valids_sum==0] = 0. points_3d_world = points_3d_world*confs[...,None] # Take care of NaNs normalization = confs.sum(dim=1)[:,None].repeat(1,Nv,1,1) normalization[normalization <= 1e-5] = 1. points_3d_world[valids] /= normalization[valids_sum==3][:,None].repeat(1,3).view(-1) points_3d_world[~valids] = 0. aggregated_points = points_3d_world.sum(dim=1) # weighted average (by confidence value) ignoring nans # Reset invalid values to nans, with a min visibility threshold aggregated_points[valids_sum.sum(dim=1)/3 <= min_num_valids] = torch.nan # From 3D to depths refcamE = extrinsics[sub_batch, 0] points_3d_camera = (refcamE[:,:3, :3] @ aggregated_points.view(sub_batchsize,-1,3).transpose(-2,-1) + refcamE[:,:3,[3]]).transpose(-2,-1) # [B,HxW,3] depths = points_3d_camera.view(sub_batchsize,H,W,3)[..., 2] # [B,H,W] # Cat results out_aggregated_points.append(aggregated_points.cpu()) out_depths.append(depths.cpu()) out_confs.append(confs.sum(dim=1).cpu()) out_aggregated_points = torch.cat(out_aggregated_points,dim=0) out_depths = torch.cat(out_depths,dim=0) out_confs = torch.cat(out_confs,dim=0) return out_aggregated_points, out_depths, out_confs