import os import time import torch import numpy as np import gradio as gr import urllib.parse import tempfile import subprocess from dust3r.losses import L21 from spann3r.model import Spann3R from spann3r.datasets import Demo from torch.utils.data import DataLoader import trimesh from scipy.spatial.transform import Rotation from transformers import AutoModelForImageSegmentation from torchvision import transforms from PIL import Image import open3d as o3d from spann3r.tools.vis import render_frames from backend_utils import improved_multiway_registration, pts2normal, point2mesh, combine_and_clean_point_clouds from gs_utils import point2gs from pose_utils import solve_cemara from gradio.helpers import Examples as GradioExamples from gradio.utils import get_cache_folder from pathlib import Path # Default values DEFAULT_CKPT_PATH = './checkpoints/spann3r.pth' DEFAULT_DUST3R_PATH = 'https://huggingface.co/camenduru/dust3r/resolve/main/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth' DEFAULT_DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) class Examples(GradioExamples): def __init__(self, *args, directory_name=None, **kwargs): super().__init__(*args, **kwargs, _initiated_directly=False) if directory_name is not None: self.cached_folder = get_cache_folder() / directory_name self.cached_file = Path(self.cached_folder) / "log.csv" self.create() def export_geometry(geometry): output_path = tempfile.mktemp(suffix='.obj') # Apply rotation rot = np.eye(4) rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() transform = np.linalg.inv(OPENGL @ rot) geometry.transform(transform) o3d.io.write_triangle_mesh(output_path, geometry, write_ascii=False, compressed=True) return output_path def extract_frames(video_path: str, duration: float = 20.0, fps: float = 3.0) -> str: temp_dir = tempfile.mkdtemp() output_path = os.path.join(temp_dir, "%03d.jpg") filter_complex = f"select='if(lt(t,{duration}),1,0)',fps={fps}" command = [ "ffmpeg", "-i", video_path, "-vf", filter_complex, "-vsync", "0", output_path ] subprocess.run(command, check=True) return temp_dir def cat_meshes(meshes): vertices, faces, colors = zip(*[(m['vertices'], m['faces'], m['face_colors']) for m in meshes]) n_vertices = np.cumsum([0]+[len(v) for v in vertices]) for i in range(len(faces)): faces[i][:] += n_vertices[i] vertices = np.concatenate(vertices) colors = np.concatenate(colors) faces = np.concatenate(faces) return dict(vertices=vertices, face_colors=colors, faces=faces) def load_ckpt(model_path_or_url, verbose=True): if verbose: print('... loading model from', model_path_or_url) is_url = urllib.parse.urlparse(model_path_or_url).scheme in ('http', 'https') if is_url: ckpt = torch.hub.load_state_dict_from_url(model_path_or_url, map_location='cpu', progress=verbose) else: ckpt = torch.load(model_path_or_url, map_location='cpu') return ckpt def load_model(ckpt_path, device): model = Spann3R(dus3r_name=DEFAULT_DUST3R_PATH, use_feat=False).to(device) model.load_state_dict(load_ckpt(ckpt_path)['model']) model.eval() return model def pts3d_to_trimesh(img, pts3d, valid=None): H, W, THREE = img.shape assert THREE == 3 assert img.shape == pts3d.shape vertices = pts3d.reshape(-1, 3) # make squares: each pixel == 2 triangles idx = np.arange(len(vertices)).reshape(H, W) idx1 = idx[:-1, :-1].ravel() # top-left corner idx2 = idx[:-1, +1:].ravel() # right-left corner idx3 = idx[+1:, :-1].ravel() # bottom-left corner idx4 = idx[+1:, +1:].ravel() # bottom-right corner faces = np.concatenate(( np.c_[idx1, idx2, idx3], np.c_[idx3, idx2, idx1], # same triangle, but backward (cheap solution to cancel face culling) np.c_[idx2, idx3, idx4], np.c_[idx4, idx3, idx2], # same triangle, but backward (cheap solution to cancel face culling) ), axis=0) # prepare triangle colors face_colors = np.concatenate(( img[:-1, :-1].reshape(-1, 3), img[:-1, :-1].reshape(-1, 3), img[+1:, +1:].reshape(-1, 3), img[+1:, +1:].reshape(-1, 3) ), axis=0) # remove invalid faces if valid is not None: assert valid.shape == (H, W) valid_idxs = valid.ravel() valid_faces = valid_idxs[faces].all(axis=-1) faces = faces[valid_faces] face_colors = face_colors[valid_faces] assert len(faces) == len(face_colors) return dict(vertices=vertices, face_colors=face_colors, faces=faces) model = load_model(DEFAULT_CKPT_PATH, DEFAULT_DEVICE) birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet', trust_remote_code=True) birefnet.to(DEFAULT_DEVICE) birefnet.eval() def extract_object(birefnet, image): # Data settings image_size = (1024, 1024) transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) input_images = transform_image(image).unsqueeze(0).to(DEFAULT_DEVICE) # Prediction with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) return mask def generate_mask(image: np.ndarray): # Convert numpy array to PIL Image pil_image = Image.fromarray((image * 255).astype(np.uint8)) # Extract object and get mask mask = extract_object(birefnet, pil_image) # Convert mask to numpy array mask_np = np.array(mask) / 255.0 return mask_np def center_pcd(pcd: o3d.geometry.PointCloud, normalize=False) -> o3d.geometry.PointCloud: # Convert to numpy array points = np.asarray(pcd.points) # Compute centroid centroid = np.mean(points, axis=0) # Center the point cloud centered_points = points - centroid if normalize: # Compute the maximum distance from the center max_distance = np.max(np.linalg.norm(centered_points, axis=1)) # Normalize the point cloud normalized_points = centered_points / max_distance # Create a new point cloud with the normalized points normalized_pcd = o3d.geometry.PointCloud() normalized_pcd.points = o3d.utility.Vector3dVector(normalized_points) # If the original point cloud has colors, normalize them too if pcd.has_colors(): normalized_pcd.colors = pcd.colors # If the original point cloud has normals, copy them if pcd.has_normals(): normalized_pcd.normals = pcd.normals return normalized_pcd else: pcd.points = o3d.utility.Vector3dVector(centered_points) return pcd def center_mesh(mesh: o3d.geometry.TriangleMesh, normalize=False) -> o3d.geometry.TriangleMesh: # Convert to numpy array vertices = np.asarray(mesh.vertices) # Compute centroid centroid = np.mean(vertices, axis=0) # Center the mesh centered_vertices = vertices - centroid if normalize: # Compute the maximum distance from the center max_distance = np.max(np.linalg.norm(centered_vertices, axis=1)) # Normalize the mesh normalized_vertices = centered_vertices / max_distance # Create a new mesh with the normalized vertices normalized_mesh = o3d.geometry.TriangleMesh() normalized_mesh.vertices = o3d.utility.Vector3dVector(normalized_vertices) normalized_mesh.triangles = mesh.triangles # If the original mesh has vertex colors, copy them if mesh.has_vertex_colors(): normalized_mesh.vertex_colors = mesh.vertex_colors # If the original mesh has vertex normals, normalize them if mesh.has_vertex_normals(): vertex_normals = np.asarray(mesh.vertex_normals) normalized_vertex_normals = vertex_normals / np.linalg.norm(vertex_normals, axis=1, keepdims=True) normalized_mesh.vertex_normals = o3d.utility.Vector3dVector(normalized_vertex_normals) return normalized_mesh else: # Update the mesh with the centered vertices mesh.vertices = o3d.utility.Vector3dVector(centered_vertices) return mesh @torch.no_grad() def reconstruct(video_path, conf_thresh, kf_every, remove_background=False, enable_registration=True, output_3d_model=True): # Extract frames from video demo_path = extract_frames(video_path) # Load dataset dataset = Demo(ROOT=demo_path, resolution=224, full_video=True, kf_every=kf_every) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0) batch = next(iter(dataloader)) for view in batch: view['img'] = view['img'].to(DEFAULT_DEVICE, non_blocking=True) demo_name = os.path.basename(video_path) print(f'Started reconstruction for {demo_name}') start = time.time() preds, preds_all = model.forward(batch) end = time.time() fps = len(batch) / (end - start) print(f'Finished reconstruction for {demo_name}, FPS: {fps:.2f}') # Process results pcds = [] cameras_all = [] last_focal = None for j, view in enumerate(batch): image = view['img'].permute(0, 2, 3, 1).cpu().numpy()[0] image = (image + 1) / 2 pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0] pts_normal = pts2normal(preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'][0]).cpu().numpy() conf = preds[j]['conf'][0].cpu().data.numpy() conf_sig = (conf - 1) / conf if remove_background: mask = generate_mask(image) else: mask = np.ones_like(conf) combined_mask = (conf_sig > conf_thresh) & (mask > 0.5) camera, last_focal = solve_cemara(torch.tensor(pts), torch.tensor(conf_sig) > 0.001, "cuda", focal=last_focal) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(pts[combined_mask]) pcd.colors = o3d.utility.Vector3dVector(image[combined_mask]) pcd.normals = o3d.utility.Vector3dVector(pts_normal[combined_mask]) pcds.append(pcd) cameras_all.append(camera) pcd_combined = combine_and_clean_point_clouds(pcds, voxel_size=0.001) o3d_geometry = point2mesh(pcd_combined) o3d_geometry_centered = center_mesh(o3d_geometry, normalize=True) # Create coarse result coarse_output_path = export_geometry(o3d_geometry_centered) yield coarse_output_path, None gs_output_path = tempfile.mktemp(suffix='.ply') if enable_registration: transformed_pcds, _, _ = improved_multiway_registration(pcds, voxel_size=0.01) transformed_pcds = center_pcd(transformed_pcds) point2gs(gs_output_path, transformed_pcds) else: point2gs(gs_output_path, pcd_combined) if output_3d_model: # Create 3D model result using gaussian splatting yield coarse_output_path, gs_output_path else: gs_output_path = tempfile.mktemp(suffix='.ply') render_video_path = render_frames(o3d_geometry, cameras_all, demo_path) yield coarse_output_path, render_video_path # Clean up temporary directory os.system(f"rm -rf {demo_path}") example_videos = [os.path.join('./examples', f) for f in os.listdir('./examples') if f.endswith(('.mp4', '.webm'))] # Update the Gradio interface with improved layout with gr.Blocks( title="StableRecon: 3D Reconstruction from Video", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as iface: gr.Markdown( """ # StableRecon: Making Video to 3D easy