import os import cv2 import json import numpy as np import os.path as osp from collections import deque from dust3r.utils.image import imread_cv2 from .base_many_view_dataset import BaseManyViewDataset ''' Preprocessing code of scannetpp is from splatam ''' class Scannetpp(BaseManyViewDataset): def __init__(self, num_seq=100, num_frames=5, min_thresh=10, max_thresh=100, test_id=None, full_video=False, kf_every=1, *args, ROOT, **kwargs): self.ROOT = ROOT super().__init__(*args, **kwargs) self.num_seq = num_seq self.num_frames = num_frames self.max_thresh = max_thresh self.min_thresh = min_thresh self.test_id = test_id self.full_video = full_video self.kf_every = kf_every # load all scenes self.load_all_scenes(ROOT) def __len__(self): return len(self.scene_list) * self.num_seq def load_all_scenes(self, base_dir, num_seq=200): if self.test_id is None: meta_split = osp.join(base_dir, 'splits', f'nvs_sem_{self.split}.txt') if not osp.exists(meta_split): raise FileNotFoundError(f"Split file {meta_split} not found") with open(meta_split) as f: self.scene_list = f.read().splitlines() print(f"Found {len(self.scene_list)} scenes in split {self.split}") else: if isinstance(self.test_id, list): self.scene_list = self.test_id else: self.scene_list = [self.test_id] print(f"Test_id: {self.test_id}") def _get_views(self, idx, resolution, rng, attempts=0): scene_id = self.scene_list[idx // self.num_seq] cams_metadata_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/nerfstudio/transforms_undistorted.json') cams_meta_data = json.load(open(cams_metadata_path, "r")) fx, fy, cx, cy = cams_meta_data['fl_x'], cams_meta_data['fl_y'], cams_meta_data['cx'], cams_meta_data['cy'] frame_meta_data = cams_meta_data['frames'] train_info_path = osp.join(self.ROOT, 'data', scene_id, 'dslr/train_test_lists.json') train_info = json.load(open(train_info_path, "r")) imgs_idxs_ = sorted(train_info['train']) imgs_idxs = self.sample_frame_idx(imgs_idxs_, rng, full_video=self.full_video) imgs_idxs = deque(imgs_idxs) filepath_index_mapping = {frame["file_path"]: index for index, frame in enumerate(frame_meta_data)} views = [] while len(imgs_idxs) > 0: im_idx = imgs_idxs.popleft() # Load image data impath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_images', im_idx) depthpath = osp.join(self.ROOT, 'data', scene_id, 'dslr/undistorted_depths', im_idx.replace('.JPG', '.png')) rgb_image = imread_cv2(impath) depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED) depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0 # Load camera params frame_metadata = frame_meta_data[filepath_index_mapping.get(im_idx)] intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) camera_pose = np.array(frame_metadata["transform_matrix"], dtype=np.float32) # gl to cv camera_pose[:, 1:3] *= -1.0 rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath) num_valid = (depthmap > 0.0).sum() if num_valid == 0 or (not np.isfinite(camera_pose).all()): if self.full_video: print(f"Warning: No valid depthmap found for {impath}") continue else: if attempts >= 5: new_idx = rng.integers(0, self.__len__()-1) return self._get_views(new_idx, resolution, rng) return self._get_views(idx, resolution, rng, attempts+1) views.append(dict( img=rgb_image, depthmap=depthmap, camera_pose=camera_pose, camera_intrinsics=intrinsics, dataset='scannetpp', label=osp.join(scene_id, im_idx), instance=osp.split(impath)[1], )) return views