# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # MASt3R heads # -------------------------------------------------------- import torch import torch.nn.functional as F import mast3r.utils.path_to_dust3r # noqa from dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa from dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa import dust3r.utils.path_to_croco # noqa from models.blocks import Mlp # noqa def reg_desc(desc, mode): if 'norm' in mode: desc = desc / desc.norm(dim=-1, keepdim=True) else: raise ValueError(f"Unknown desc mode {mode}") return desc def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None): if desc_conf_mode is None: desc_conf_mode = conf_mode fmap = out.permute(0, 2, 3, 1) # B,H,W,D res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode)) if conf_mode is not None: res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode) if desc_dim is not None: start = 3 + int(conf_mode is not None) res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode) if two_confs: res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode) else: res['desc_conf'] = res['conf'].clone() return res class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT): """ Mixture between MLP and DPT head that outputs 3d points and local features (with MLP). The input for both heads is a concatenation of Encoder and Decoder outputs """ def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None, num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs): super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type) self.local_feat_dim = local_feat_dim patch_size = net.patch_embed.patch_size if isinstance(patch_size, tuple): assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance( patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints." assert patch_size[0] == patch_size[1], "Error, non square patches not managed" patch_size = patch_size[0] self.patch_size = patch_size self.desc_mode = net.desc_mode self.has_conf = has_conf self.two_confs = net.two_confs # independent confs for 3D regr and descs self.desc_conf_mode = net.desc_conf_mode idim = net.enc_embed_dim + net.dec_embed_dim self.head_local_features = Mlp(in_features=idim, hidden_features=int(hidden_dim_factor * idim), out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2) def forward(self, decout, img_shape): # pass through the heads pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1])) # recover encoder and decoder outputs enc_output, dec_output = decout[0], decout[-1] cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate H, W = img_shape B, S, D = cat_output.shape # extract local_features local_features = self.head_local_features(cat_output) # B,S,D local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W # post process 3D pts, descriptors and confidences out = torch.cat([pts3d, local_features], dim=1) if self.postprocess: out = self.postprocess(out, depth_mode=self.depth_mode, conf_mode=self.conf_mode, desc_dim=self.local_feat_dim, desc_mode=self.desc_mode, two_confs=self.two_confs, desc_conf_mode=self.desc_conf_mode) return out def mast3r_head_factory(head_type, output_mode, net, has_conf=False): """" build a prediction head for the decoder """ if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'): local_feat_dim = int(output_mode[10:]) assert net.dec_depth > 9 l2 = net.dec_depth feature_dim = 256 last_dim = feature_dim // 2 out_nchan = 3 ed = net.enc_embed_dim dd = net.dec_embed_dim return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf, num_channels=out_nchan + has_conf, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2], dim_tokens=[ed, dd, dd, dd], postprocess=postprocess, depth_mode=net.depth_mode, conf_mode=net.conf_mode, head_type='regression') else: raise NotImplementedError( f"unexpected {head_type=} and {output_mode=}")